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Assumptions of MDS 

Multidimensional Scaling (MDS) describes a 
family of techniques for the analysis of 
proximity data on a set of stimuli to reveal the 
hidden structure underlying the data. The 
proximity data can come from similarity 
judgments, identification confusion matrices, 
grouping data, same-different errors or any 
other measure of pairwise similarity. The main 
assumption in MDS is that stimuli can be 
described by values along a set of dimensions 
that places these stimuli as points in a 
multidimensional space and that the similarity 
between stimuli is inversely related to the 
distances of the corresponding points in the 
multidimensional space. The Minkowski 
distance metric provides a general way to 
specify distance in a multidimensional space:  
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where n is the number of dimensions, and xik is 
the value of dimension k for stimulus i. With r 
=2, the metric equals the Euclidian distance 
metric while r=1 leads to the city-block metric. 
A Euclidian metric is appropriate when the 
stimuli are composed of integral or 
perceptually fused dimensions such as the 
dimensions of brightness and saturation for 
colours. The city-block metric is appropriate 
when the stimuli are composed of separable 
dimensions such as size and brightness 
(Attneave, 1950). In practice, the Euclidian 
distance metric is often used because of 
mathematical convenience in MDS 
procedures.  

MDS can be applied with different purposes. 
One is exploratory data analysis; by placing 
objects as points in a low dimensional space, 
the observed complexity in the original data 
matrix can often be reduced while preserving 
the essential information in the data. By a 
representation of the pattern of proximities in 

two or three dimensions, researchers can 
visually study the structure in the data.  

It also has been used to discover the mental 
representation of stimuli that explains how 
similarity judgments are generated. 
Sometimes, MDS reveals the psychological 
dimensions hidden in the data that can 
meaningfully describe the data. The 
multidimensional representations resulting 
from MDS are also often useful as the 
representational basis for various mathematical 
models of categorization, identification, and/or 
recognition memory (Nosofsky, 1992) or 
generalization (Shepard, 1987).  

We will illustrate some of the issues in MDS 
with the analysis of a face similarity 
judgement task. In Figure 1a, the average of a 
group of subjects’  similarity ratings is shown 
for 10 faces shown in Figure 1c. The idea is to 
reveal some of the perceptual dimensions that 
subjects might have used when generating 
similarity judgments for these faces.  

Techniques for  M DS 

There are many different MDS techniques to 
analyse proximity data and many issues in the 
analysis and interpretation of the results. First, 
there is the distinction between metric and 
nonmetric MDS. The goal of metric MDS is to 
find a configuration of points in some 
multidimensional space such that the interpoint 
distances are related to the experimentally 
obtained similarities by some transformation 
function (e.g., a linear transformation 
function). If the proximity data are generated 
with Euclidian distances for some stimulus 
configuration, then a procedure called classical 
metric MDS (Torgeson, 1965) can exactly 
recreate the configuration of points. Because a 
closed form solution exists to find such a 
configuration of points, classical metric MDS 
can be performed efficiently on large matrices. 
In nonmetric MDS (first devised by Shepard in 
1962), the goal is to establish a monotonic 
relationship between interpoint distances and 
obtained similarities. The advantage of 
nonmetric MDS is that no assumptions need to 
be made about the underlying transformation 
function; the only assumption is that the data is 
measured at the ordinal level.  

Kruskal (1964) proposed a measure for the 
deviation from monotonicity between the  

distances ijd and the observed dissimilarities 
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ijo called the stress function:  
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Note that the observed dissimilarities ijo  do 

not appear in this formula.  Instead, the 
discrepancy between the predicted distances 

ijd  and the target distances *
ijd  are measured. 

Based on the current configuration of points, 

the target distances *
ijd  are found by 

monotonic regression and represent the 
distances that are monotonically related to the 

observed dissimilarities ijo . Several iterative 

minimization algorithms exist to move the 
object points in a multidimensional space in 
order to minimize stress (see Borg & Groenen, 
1997). In the face similarity example, Figure 
1d displays what is known as the Shepard plot. 
It shows the relationship between predicted 

distances ijd (for the two-dimensional scaling 

solution in Figure 1c) and observed 
dissimilarities as filled circles and can serve to 
understand what metric transformation would 
be appropriate to relate one to the other. The 
line in the plot shows the relationship between 

the target distances *
ijd  found by monotonic 

regression and observed dissimilarities. 
Kruskal stress essentially is a measure based 
on the sum of the squared deviations between 
the filled circles and the line along the 
abscissa. 

Another distinction in MDS is between 
weighted MDS, replicated MDS and MDS on 
a single matrix (Young, & Hamer, 1994). In 
replicated MDS, several matrices of similarity 
data can be analysed simultaneously. The 
matrices are provided by different subjects or 
by a single subject tested at multiple times and 
a single scaling solution captures the similarity 
data of all matrices through separate metric or 
nonmetric relationships for each matrix. This 
approach can take individual differences in 
response bias into account. In weighted 
replicated MDS (e.g., INDSCAL, Carroll & 
Chang, 1970), the dimensions in the scaling 
solution can be weighted differently for each 
subject or subject replication to model 
differences in attention or sensitivity for the 
different dimensions.  

Finally, there is the distinction between 
deterministic and probabilistic MDS. In 
deterministic MDS, each object is represented 

as a single point in multidimensional space 
(e.g., Borg & Groenen, 1997) whereas in 
probabilistic MDS (MacKay, 1989), each 
object is represented as a probability 
distribution in multidimensional space. In 
understanding the mental representation of 
objects, this last approach is useful when 
representation of objects is assumed to be 
noisy (i.e., the presentation of the same object 
on every trial gives rise to different internal 
representations). 

An important issue in MDS is choosing the 
number of dimensions for the scaling solution. 
A configuration with a high number of 
dimensions achieves  very low stress values 
but cannot easily be comprehended by the 
human eye, and is apt to be determined more 
by noise than by the essential structure in the 
data.  On the other hand, a solution with too 
few dimensions might not reveal enough of the 
structure in the data.  

A well known method to select the 
dimensionality is the scree test (also known as 
the elbow test) where stress (or other lack of fit 
measure) is plotted against the dimensionality. 
Ideally, this choice is visually obvious from 
the “elbow”  in the scree plot where after a 
certain number of dimensions, the stress is not 
reduced substantially. However, in many data-
sets, stress decreases smoothly with increasing 
dimensionality making the choice of 
appropriate dimensionality very difficult with 
this method.  In Figure 1b, the filled circles 
shows the scree plot for the face similarity 
dataset.  Note that a slight elbow is present at 
two dimensions which suggests that a two 
dimensional configuration might be 
appropriate. A more salient indicator for the 
appropriate dimensionality can be obtained by 
cross-validation. The idea is to test how the 
configuration optimised to model the 
proximity data for one group of subjects can 
generalize to the proximity data of a different 
group of subjects. In Figure 1b, the open 
circles show the stress value for a second 
group of subjects with a clear rise in stress 
value after two dimensions while the stress 
continues to decrease for the first group of 
subjects. In this case, it seems reasonable to 
conclude that a two dimensional configuration 
is appropriate because it can best generalize to 
other subjects. Lee (2001) has explored other 
techniques to determine dimensionality based 
on balancing the trade-off between model fit 
and model complexity.  

Another important issue is the interpretation of 
the scaling solution resulting from MDS 
procedures. If the proximity data were 
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generated by a function of the distances along 
some set of dimensions, then the resulting 
configuration of points in a scaling solution 
should reflect those dimensions. However, 
often Euclidian distances are used in scaling 
procedures so that the orientation of axes in the 
resulting configuration is arbitrary: any 
rotation of the axes would result in the same 
distances (and therefore stress). In such cases, 
the researcher can either visually scan the 
configuration in order to choose an orientation 
of axes that leads to interpretable results or 
apply less arbritrary procedures by multiple 
regression analyses. In such analyses, the idea 
is to regress meaningful variables on the 
coordinates for the different dimensions and 
rotate the solution as to maximize the 
interpretability. In Figure 1c, the two 
dimensional scaling solution is shown for the 
10 faces. After visual inspection, the 
configuration can be interpreted as the 
perceptual dimensions of age and adiposity.     

Advances in MDS 

The success of the MDS approach arises in 
part from the simplicity of the underlying 
assumptions and the wide availability of 
computer software to create scaling solutions. 
Recent research has expanded the scope of the 
MDS approach in several directions. In Isomap 
(Tenenbaum, De Silva, &  Lanford, 2000), 
stimuli are represented as points lying on a 
non-linear manifold in some multidimensional 
space. Similarity then is computed as the 
geodesic distance on the manifold (i.e., the 
shortest distance along the manifold) as 
opposed to Euclidian distance in MDS. This 
technique is capable of discovering the non-
linear degrees of freedom that underlie 
complex data-sets.  

A drawback of most MDS algorithm is that a 
N x N matrix of similarity judgments is needed 
to scale N objects. Therefore, the number of 
similarity ratings needed depends quadratically 
on the number of objects which leads to 
practical limitations (e.g., subject time, number 
of subjects) on the number of objects that can 
be used in scaling studies. With modified MDS 
procedures, the amount of data that needs to be 
collected might be reduced. In the anchor point 
method (e.g., Buja, Swayne, Littman, & Dean, 
1998),  subjects rate all similarity pairs 
involving N objects and a smaller number of K 
anchor points that provide a representative 
sample of N objects. A modified MDS 
procedure then analyses the N x K similarity 
matrix in order to scale N objects. Future 
research will have to show how small K can 

become relative to N in order for this 
technique to make drastic savings possible in 
the similarity data collection.  

Another recent advance in MDS models is the 
feature mapping approach (Rumelhart & Todd, 
1992; Steyvers, & Busey, 2000). In the 
traditional approach, the physical 
representation of the features comprising the 
stimuli is explicitly ignored. In such a purely 
top-down approach, the multidimensional 
representations are sometimes difficult to 
relate back to the physical stimulus by visual 
interpretation or regression analyses. In the 
feature mapping approach, in addition to the 
proximity data, additional physical 
measurements on the set of stimuli is available. 
The goal is to find a mapping between the set 
of physical measurements of an stimulus to the 
position of that stimulus in an abstract 
psychological space. With this approach, the 
multidimensional space is related directly to 
the physical dimensions of the stimuli.   

Challenges for  MDS 

Tversky and Hutchinson (1986) have argued 
that for language-related stimuli that have 
conceptual as opposed to perceptual relations, 
geometric models based on MDS may fail to 
capture some aspects of the data and might 
therefore be inappropriate as a representational 
basis. For such stimuli, tree or graph-theoretic 
structures might be better suited than 
spatial/dimensional models based on MDS. 
Nevertheless, the geometric model of 
similarity has been applied to a wide variety of 
stimuli rich in conceptual structure.  In Latent 
Semantic Analysis (Landauer & Dumais, 
1997),  words are placed in a high dimensional 
semantic space by a procedure related to MDS 
by analysing the co-occurrence statistics for 
words appearing in contexts in a large corpus. 
In this semantic space, words with similar 
meaning are placed in nearby regions of the 
space. While the Latent Semantic Analysis 
approach has been very successful in 
modelling human performance in a variety of 
semantic tasks, it remains to be seen to what 
degree a geometric model is appropriate to 
model language related processes. 

Also, for some highly structured objects, the 
simple geometric model for similarity as used 
in MDS may not be particularly revealing for 
analysing the process of generating similarity 
judgments. In a geometric model, it is assumed 
that the set of objects can be described by a 
fixed collection of feature values where the 
process of generating similarity judgments is 
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always based on the differences for the same 
set of features. However, for highly structured 
or complex objects, the features that play a role 
in the similarity judgments may differ 
depending on what objects are compared. In 
alignment models (Goldstone, 1994), 
similarity is assessed dynamically by an 
alignment process that analyses which features 
play corresponding roles in the objects that are 
compared. 
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Figure 1. 


