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Abstract

We show how to learn a Mahanalobis distance metric for k£-nearest neigh-
bor (kNN) classification by semidefinite programming. The metric is
trained with the goal that the k-nearest neighbors always belong to the
same class while examples from different classes are separated by a large
margin. On seven data sets of varying size and difficulty, we find that
metrics trained in this way lead to significant improvements in kNN
classification—for example, achieving a test error rate of 1.3% on the
MNIST handwritten digits. As in support vector machines (SVMs), the
learning problem reduces to a convex optimization based on the hinge
loss. Unlike learning in SVMs, however, our framework requires no
modification or extension for problems in multiway (as opposed to bi-
nary) classification.

1 Introduction

The k-nearest neighbors (kNN) rule [3] is one of the oldest and simplest methods for pattern
classification. Nevertheless, it often yields competitive results, and in certain domains,
when cleverly combined with prior knowledge, it has significantly advanced the state-of-
the-art [1, 14]. The kNN rule classifies each unlabeled example by the majority label among
its k-nearest neighbors in the training set. Its performance thus depends crucially on the
distance metric used to identify nearest neighbors.

In the absence of prior knowledge, most kNN classifiers use simple Euclidean distances
to measure the dissimilarities between examples represented as vector inputs. Euclidean
distance metrics, however, do not capitalize on any statistical regularities in the data that
might be estimated from a large training set of labeled examples.

Ideally, the distance metric for kNN classification should be adapted to the particular
problem being solved. It can hardly be optimal, for example, to use the same dis-
tance metric for face recognition as for gender identification, even if in both tasks, dis-
tances are computed between the same fixed-size images. Indeed, as shown by many re-
searchers [2, 6, 7, 8, 12, 13], kNN classification can be significantly improved by using a
distance metric learned from labeled examples. Even a simple (global) linear transforma-
tion of input features has been shown to result in much better kNN classification [7, 12].
Our work builds in a novel direction on the success of these previous approaches.



In this paper, we show how to learn a Mahanalobis distance metric for kNN classification.
The metric is optimized with the goal that k-nearest neighbors always belong to the same
class while examples from different classes are separated by a large margin. Our goal for
metric learning differs in a crucial way from those of previous approaches that minimize the
pairwise distances between all similarly labeled examples [12, 13, 17]. This latter objective
is far more difficult to achieve and does not leverage the full power of kNN classification,
whose accuracy does not require that all similarly labeled inputs be tightly clustered.

Our approach is largely inspired by recent work on neighborhood component analysis [7]
and metric learning by energy-based models [2]. Though based on the same goals, however,
our methods are quite different. In particular, we are able to cast our optimization as an
instance of semidefinite programming. Thus the optimization we propose is convex, and
its global minimum can be efficiently computed.

Our approach has several parallels to learning in support vector machines (SVMs)—most
notably, the goal of margin maximization and a convex objective function based on the
hinge loss. In light of these parallels, we describe our approach as large margin nearest
neighbor (LMNN) classification. Our framework can be viewed as the logical counterpart
to SVMs in which kNN classification replaces linear classification.

Our framework contrasts with classification by SVMs, however, in one intriguing respect:
it requires no modification for problems in multiway (as opposed to binary) classifica-
tion. Extensions of SVMs to multiclass problems typically involve combining the results
of many binary classifiers, or they require additional machinery that is elegant but non-
trivial [4]. In both cases the training time scales at least linearly in the number of classes.
By contrast, our learning problem has no explicit dependence on the number of classes.

2 Model

Let { (%, y;)}"_, denote a training set of n labeled examples with inputs #; € R? and dis-
crete (but not necessarily binary) class labels y;. We use the binary matrix y;; € {0,1} to
indicate whether or not the labels y; and y; match. Our goal is to learn a linear transforma-
tion L: R4 — R%, which we will use to compute squared distances as:

D(i;, @) = ||L(& — 7)™ @

Specifically, we want to learn the linear transformation that optimizes kNN classification
when distances are measured in this way. We begin by developing some useful terminology.

Target neighbors

In addition to the class label y;, for each input &; we also specify k “target” neighbors—
that is, k other inputs with the same label y; that we wish to have minimal distance to Z;,
as computed by eq. (1). In the absence of prior knowledge, the target neighbors can simply
be identified as the k nearest neighbors, determined by Euclidean distance, that share the
same label y;. (This was done for all the experiments in this paper.) We use 7;; € {0,1} to
indicate whether input &; is a target neighbor of input ;. Like the binary matrix y;;, the
matrix 7);; is fixed and does not change during learning.

Cost function

Our cost function over the distance metrics parameterized by eq. (1) has two competing
terms. The first term penalizes large distances between each input and its target neighbors,
while the second term penalizes small distances between each input and all other inputs
that do not share the same label. Specifically, the cost function is given by:
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where in the second term [z]1 = max(z,0) denotes the standard hinge loss and ¢ > 0 de-
notes some positive constant (typically set by cross validation). Note that the first term only
penalizes large distances between inputs and target neighbors, not between all similarly la-
beled examples.
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Figure 1: Schematic illustration of one input’s
neighborhood #; before training (left) versus
after training (right). The distance metric is op-
timized so that: (i) its k=3 target neighbors lie
within a smaller radius after training; (ii) differ-
Parallels with SVMs ently labeled inputs lie outside this smaller ra-
The competing terms in eq. (2) are anal-  dius, with a margin of at least one unit distance.
ogous to those in the cost function for ~Arrows indicate the gradients on distances aris-
SVMs [11]. In both cost functions, one  ing from the optimization of the cost function.
term penalizes the norm of the “parame-

ter” vector (i.e., the weight vector of the maximum margin hyperplane, or the linear trans-
formation in the distance metric), while the other incurs the hinge loss for examples that
violate the condition of unit margin. Finally, just as the hinge loss in SVMs is only trig-
gered by examples near the decision boundary, the hinge loss in eq. (2) is only triggered by
differently labeled examples that invade each other’s neighborhoods.

Convex optimization

We can reformulate the optimization of eq. (2) as an instance of semidefinite program-
ming [16]. A semidefinite program (SDP) is a linear program with the additional constraint
that a matrix whose elements are linear in the unknown variables is required to be posi-
tive semidefinite. SDPs are convex; thus, with this reformulation, the global minimum of
eq. (2) can be efficiently computed. To obtain the equivalent SDP, we rewrite eq. (1) as:

D(T;, 7)) = (& — ;) 'M(T; — 7;), 3)
where the matrix M = L'L, parameterizes the Mahalanobis distance metric induced by
the linear transformation L. Rewriting eq. (2) as an SDP in terms of M is straightforward,
since the first term is already linear in M = L'L and the hinge loss can be “mimicked” by

introducing slack variables &;; for all pairs of differently labeled inputs (i.e., for all (7, j)
such that y;; = 0). The resulting SDP is given by:

Minimize ZU Nij (.’fl — fj)TM(fz — il_"j) + CZijl T]ij(]. — yil)gijl subject to:
M) (% — ) "M(T — ) — (& — %) TM(Z; — 7)) > 1—E&j
2 &1 =0
3)M = 0.

The last constraint M > 0 indicates that the matrix M is required to be positive semidef-
inite. While this SDP can be solved by standard online packages, general-purpose solvers



tend to scale poorly in the number of constraints. For this work, we implemented our own
special-purpose solver, exploiting the fact that most of the slack variables {¢;; } never at-
tain positive values'. The slack variables {¢;;} are sparse because most labeled inputs are
well separated; thus, their resulting pairwise distances do not incur the hinge loss, and we
obtain very few active constraints. Our solver was based on a combination of sub-gradient
descent in both the matrices L and M, the latter used mainly to verify that we had reached
the global minimum. We projected updates in IM back onto the positive semidefinite cone
after each step. Alternating projection algorithms provably converge [16], and in this case
our implementation worked much faster than generic solvers~.

3 Results

We evaluated the algorithm in the previous section on seven data sets of varying size and
difficulty. Table 1 compares the different data sets. Principal components analysis (PCA)
was used to reduce the dimensionality of image, speech, and text data, both to speed up
training and avoid overfitting. Except for Isolet and MNIST, all of the experimental results
are averaged over several runs of randomly generated 70/30 splits of the data. Isolet and
MNIST have pre-defined training/test splits. For the other data sets, we randomly gener-
ated 70/30 splits for each run. Both the number of target neighbors (k) and the weighting
parameter (c) in eq. (2) were set by cross validation. (For the purpose of cross-validation,
the training sets were further partitioned into training and validation sets.) We begin by
reporting overall trends, then discussing the individual data sets in more detail.

We first compare kNN classification error rates using Mahalanobis versus Euclidean dis-
tances. To break ties among different classes, we repeatedly reduced the neighborhood
size, ultimately classifying (if necessary) by just the k = 1 nearest neighbor. Fig. 2 sum-
marizes the main results. Except on the smallest data set (where over-training appears to
be an issue), the Mahalanobis distance metrics learned by semidefinite programming led to
significant improvements in kNN classification, both in training and testing. The training
error rates reported in Fig. 2 are leave-one-out estimates.

We also computed test error rates using a variant of kNN classification, inspired by previous
work on energy-based models [2]. Energy-based classification of a test example &; was
done by finding the label that minimizes the cost function in eq. (2). In particular, for
a hypothetical label y;, we accumulated the squared distances to the k nearest neighbors
of @ that share the same label in the training set (corresponding to the first term in the
cost function); we also accumulated the hinge loss over all pairs of differently labeled
examples that result from labeling &; by y; (corresponding to the second term in the cost
function). Finally, the test example was classified by the hypothetical label that minimized
the combination of these two terms:

ye=argming, > 1y, |L(FE) 1P +e Y mij (i) [1+ L& —2) 1>~ L@ -],
J Jri=tVvi=t

As shown in Fig. 2, energy-based classification with this assignment rule generally led to

even further reductions in test error rates.

Finally, we compared our results to those of multiclass SVMs [4]. On each data set (except
MNIST), we trained multiclass SVMs using linear and RBF kernels; Fig. 2 reports the
results of the better classifier. On MNIST, we used a non-homogeneous polynomial kernel
of degree four, which gave us our best results. (See also [9].)

'A great speedup can be achieved by solving an SDP that only monitors a fraction of the margin
constraints, then using the resulting solution as a starting point for the actual SDP of interest.
2 A matlab implementation is currently available at http://www.seas.upenn.edu/~Kkilianw/lmnn.



Iris Wine | Faces Bal Isolet News MNIST
examples (train) 106 126 280 445 6238 16000 60000
examples (test) 44 52 120 90 1559 2828 10000
classes 3 3 40 3 26 20 10
input dimensions 4 13 1178 4 617 30000 784
features after PCA 4 13 30 4 172 200 164
constraints 5278 | 7266 | 78828 | 76440 | 37 Mil | 164 Mil | 3.3 Bil
active constraints 113 1396 7665 3099 45747 | 732359 | 243596
CPU time (per run) 2s 8s s 13s 11m 1.5h 4h
runs 100 100 100 100 1 10 1

Table 1: Properties of data sets and experimental parameters for LMNN classification.
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Figure 2: Training and test error rates for kNN classification using Euclidean versus Ma-
halanobis distances. The latter yields lower test error rates on all but the smallest data set
(presumably due to over-training). Energy-based classification (see text) generally leads to
further improvement. The results approach those of state-of-the-art multiclass SVMs.

Small data sets with few classes

The wine, iris, and balance data sets are small data sets, with less than 500 training exam-
ples and just three classes, taken from the UCI Machine Learning Repository®. On data
sets of this size, a distance metric can be learned in a matter of seconds. The results in
Fig. 2 were averaged over 100 experiments with different random 70/30 splits of each data
set. Our results on these data sets are roughly comparable (i.e., better in some cases, worse
in others) to those of neighborhood component analysis (NCA) and relevant component
analysis (RCA), as reported in previous work [7].

Face recognition

The AT&T face recognition data set* contains 400 grayscale images of 40 individuals in
10 different poses. We downsampled the images from to 38 x 31 pixels and used PCA to
obtain 30-dimensional eigenfaces [15]. Training and test sets were created by randomly
sampling 7 images of each person for training and 3 images for testing. The task involved
40-way classification—essentially, recognizing a face from an unseen pose. Fig. 2 shows
the improvements due to LMNN classification. Fig. 3 illustrates the improvements more
graphically by showing how the k = 3 nearest neighbors change as a result of learning a
Mahalanobis metric. (Though the algorithm operated on low dimensional eigenfaces, for
clarity the figure shows the rescaled images.)

3 Available at http://www.ics.uci.edu/~mlearn/MLRepository.html.
* Available at http://www.uk.research.att.com/facedatabase.html
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Figure 3: Images from the AT&T face recognition data base. Top row: an image correctly
recognized by kNN classification (k = 3) with Mahalanobis distances, but not with Eu-
clidean distances. Middle row: correct match among the k=3 nearest neighbors according
to Mahalanobis distance, but not Euclidean distance. Bottom row: incorrect match among
the k=3 nearest neighbors according to Euclidean distance, but not Mahalanobis distance.

Spoken letter recognition

The Isolet data set from UCI Machine Learning Repository has 6238 examples and 26
classes corresponding to letters of the alphabet. We reduced the input dimensionality (orig-
inally at 617) by projecting the data onto its leading 172 principal components—enough
to account for 95% of its total variance. On this data set, Dietterich and Bakiri report test
error rates of 4.2% using nonlinear backpropagation networks with 26 output units (one per
class) and 3.3% using nonlinear backpropagation networks with a 30-bit error correcting
code [5]. LMNN with energy-based classification obtains a test error rate of 3.7%.

Text categorization

The 20-newsgroups data set consists of posted articles from 20 newsgroups, with roughly
1000 articles per newsgroup. We used the 18828-version of the data set® which has cross-
postings removed and some headers stripped out. We tokenized the newsgroups using the
rainbow package [10]. Each article was initially represented by the weighted word-counts
of the 20,000 most common words. We then reduced the dimensionality by projecting the
data onto its leading 200 principal components. The results in Fig. 2 were obtained by av-
eraging over 10 runs with 70/30 splits for training and test data. Our best result for LMMN
on this data set at 13.0% test error rate improved significantly on kNN classification using
Euclidean distances. LMNN also performed comparably to our best multiclass SVM [4],
which obtained a 12.4% test error rate using a linear kernel and 20000 dimensional inputs.

Handwritten digit recognition

The MNIST data set of handwritten digits® has been extensively benchmarked [9]. We
deskewed the original 28 x 28 grayscale images, then reduced their dimensionality by re-
taining only the first 164 principal components (enough to capture 95% of the data’s overall
variance). Energy-based LMNN classification yielded a test error rate at 1.3%, cutting the
baseline kNN error rate by over one-third. Other comparable benchmarks [9] (not exploit-
ing additional prior knowledge) include multilayer neural nets at 1.6% and SVMs at 1.2%.
Fig. 4 shows some digits whose nearest neighbor changed as a result of learning, from a
mismatch using Euclidean distance to a match using Mahanalobis distance.

4 Related Work

Many researchers have attempted to learn distance metrics from labeled examples. We
briefly review some recent methods, pointing out similarities and differences with our work.

3 Available at http:/people.csail. mit.edu/jrennie/20Newsgroups/
8 Available at http://yann.lecun.com/exdb/mnist/
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Figure 4: Top row: Examples of MNIST images whose nearest neighbor changes dur-
ing training. Middle row: nearest neighbor after training, using the Mahalanobis distance
metric. Bottom row: nearest neighbor before training, using the Euclidean distance metric.

Xing et al [17] used semidefinite programming to learn a Mahalanobis distance metric
for clustering. Their algorithm aims to minimize the sum of squared distances between
similarly labeled inputs, while maintaining a lower bound on the sum of distances between
differently labeled inputs. Our work has a similar basis in semidefinite programming, but
differs in its focus on local neighborhoods for kNN classification.

Shalev-Shwartz et al [12] proposed an online learning algorithm for learning a Mahalanobis
distance metric. The metric is trained with the goal that all similarly labeled inputs have
small pairwise distances (bounded from above), while all differently labeled inputs have
large pairwise distances (bounded from below). A margin is defined by the difference of
these thresholds and induced by a hinge loss function. Our work has a similar basis in its
appeal to margins and hinge loss functions, but again differs in its focus on local neigh-
borhoods for kNN classification. In particular, we do not seek to minimize the distance
between all similarly labeled inputs, only those that are specified as neighbors.

Goldberger et al [7] proposed neighborhood component analysis (NCA), a distance metric
learning algorithm especially designed to improve kNN classification. The algorithm min-
imizes the probability of error under stochastic neighborhood assignments using gradient
descent. Our work shares essentially the same goals as NCA, but differs in its construction
of a convex objective function.

Chopra et al [2] recently proposed a framework for similarity metric learning in which
the metrics are parameterized by pairs of identical convolutional neural nets. Their cost
function penalizes large distances between similarly labeled inputs and small distances
between differently labeled inputs, with penalties that incorporate the idea of a margin.
Our work is based on a similar cost function, but our metric is parameterized by a linear
transformation instead of a convolutional neural net. In this way, we obtain an instance of
semidefinite programming.

Relevant component analysis (RCA) constructs a Mahalanobis distance metric from a
weighted sum of in-class covariance matrices [13]. It is similar to PCA and linear discrim-
inant analysis (but different from our approach) in its reliance on second-order statistics.

Hastie and Tibshirani [8] and Domeniconi et al [6] consider schemes for locally adaptive
distance metrics that vary throughout the input space. The latter work also appeals to the
goal of margin maximization but otherwise differs substantially from our approach. In
particular, Domeniconi et al [6] suggest to use the decision boundaries of SVMs to induce
alocally adaptive distance metric for kNN classification. By contrast, our approach (though
similarly named) does not involve the training of SVMs.

5 Discussion

In this paper, we have shown how to learn Mahalanobis distance metrics for kNN clas-
sification by semidefinite programming. Our framework makes no assumptions about the
structure or distribution of the data and scales naturally to large number of classes. Ongoing



work is focused in three directions. First, we are working to apply LMNN classification to
problems with hundreds or thousands of classes, where its advantages are most apparent.
Second, we are investigating the kernel trick to perform LMNN classification in nonlin-
ear feature spaces. As LMMN already yields highly nonlinear decision boundaries in the
original input space, however, it is not obvious that “kernelizing” the algorithm will lead to
significant further improvement. Finally, we are extending our framework to learn locally
adaptive distance metrics [6, 8] that vary across the input space. Such metrics should lead
to even more flexible and powerful LMNN classifiers.
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