Suppor tvector machines

My first exposure to SuppoXector Machines came this spring when | heard Sue
Dumais present impressiresults on tet catgorization using this analysis technique.
This issues collection of essays should hedriliarize our readers with this interest-
ing nav racehorse in the Machine Learning stable. Bernhard Smbiolk an intro-
ductory werview, points out that a particular aaivtage of SVMser other learning

algorithms is that it can be analyzed theoretically using concepts from computational

learning theoryand at the same time can asleigood performance when applied to
real problems. Examples of these reaka applications are pvided by Sue Dumais,
who describes the aforementionextteatgorization problemyielding the best re-
sults to date on the Reuters collectiang Edgar Osunaho presents strong results
on application todce detection. Our fourth authdohn Plattgives us a practical
guide and a ne technique for implementing the algorithnfigently.

learning theory

Bernhad Shélkopf, GMD Frst

Is there aything worthwhile to learn
about the ng SVM algorithmor does it
fall into the catgory of “yet-anothesalgo-
rithm,” in which case readers should stop
here and sa their time for something
more useful? In this shorverview, | will
try to ague that studying supporegtor
learning is ery useful in tv respects.
First,it is quite satisfying from a theoreti-
cal point of viev: SV learning is based on
some beautifully simple ideas and yides
a clear intuition of what learning fromxe
amples is about. Secoritican lead to high
performances in practical applications.

In the following sense can the SV algo-
rithm be considered as lying at the interse
tion of learning theory and practider
certain simple types of algorithnsatisti-
cal learning theory can identify rather pre
cisely the &ctors that need to be &kinto
account to learn successfulBeal-vorld
applicationshowever, often mandate the
use of more compkemodels and algori-
thms—such as neural naivks—that are
much harder to analyze theoreticalie
SV algorithm achiees both. It constructs
models that are comple&noughit con-

tains a lage class of neural netadial

oc- | will explain the gist of SV methods by

—Marti Hearst

basis function (RBF) netand polynomial
classifers as special cas&®t it is simple
enough to be analyzed mathematically
because it can be shin to correspond to a
linear method in a high-dimensionfda-
ture spacenonlinearly related to input
space. Moreeer, even though we can think
of it as a linear algorithm in a high-dimen
sional spacen practicejt does not imolve

ary computations in that high-dimensional

space. By the use kérnels all necessary
computations are performed directly in
input spaceThis is the characteristic twist
of SV methods—we are dealing with com
plex algorithms for nonlinear pattern
recognitiont regressior?, or feature gtrac-
tion,3 but for the sak of analysis and algo-
rithmics,we can pretend that we areriw
ing with a simple linear algorithm.

describing their roots in learning theory
the optimal hyperplane algorithie ler-
nel trick,and SV function estimationoF
details and further referencegeViadimir
Vapnik’s authoritatie treatmeng the col-
lection my colleagues and I\eput to-
gether* and the SWVeb page altittp://svm.
first.gmd.de

Learning pattern recognition from
examples
For pattern recognitionye try to esti-

- to one with acapacitythat is suitable for

By Marti A. Hearst
University of California, Berkeley
hearst@sims.berkeley.edu

mate a functiofiR N—{+1} using training
data—that isN-dimensional patterng
and class labelg,

(Xlryl)""l((‘vy)DRNX{il}i (1)
such that will correctly classify ne exam-
ples &y)—that is f(x) =y for examplesx.y),
which were generated from the same under-
lying probability distrilution P(x,y) as the
training data. If we put no restriction on the
class of functions that we choose our estima
ffrom, however, even a function that does
well on the training data—foxample by
satisfyingf(x;) =y; (here and belg, the indr
i is understood to ruveo1l,...,' )—need
not generalize well to unseemples. Sup-
pose we ko nothing additional abé(for
exampleabout its smoothne§®)en the
values on the training patterns carry no inf
mation whatseer aboutalues on el
patterns. Hence learning is imposaifude,
minimizing the training error does not impl
a smallxpected test error

Statistical learning theofor VC (Vap-
nik-Cherwonenkis) theoryshows that it is
crucial to restrict the class of functions
that the learning machine can implement

the amount of gailable training data.

Hyperplane dassifiers

To design learning algorithmsge thus
must come up with a class of functions
whose capacity can be computed. SV clast
sifiers are based on the class of hyperplan

whd b= ow[IRN bR (2)

corresponding to decision functions

fo) = sighd( ). (3)
We can shw that theoptimal hyper-

plane defined as the one with the maximal

maugin of separation between theaw

classes (see Figure bas the lwest ca-
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Fgure 1. Aseparable dassification toy problem: separate ballsfrom diamonds. The optimal hyperplane isorthogonal
tothe shortest line connedting the convex hulls of the two dasses (dotted), and intersedsit half way. There isa weight

vedor w and a threshold bsuch that y; C{(wDd)) + b) > 0.

Rescaling w and bsuchthat the paint(s) dosest tothe

hyperplane satisfy |(w¥,) + bl = 1, we obtain aform (w,b) of the hyperplane with y{(w [¢) + b) > 1. Note that the
margin, measured perpendicularly to the hyperplane, equals2/ || w |1. To maximize the margin, we thushave to

minimize w| subjed to y((wDX)) + b) = 1.

Input space Feature space
o *
.
@
° o °
¢ )

Figure2. Theidea of S/machines map the training data
nonlineerly into a higher-dimensional feature pacevia
@, and aondrud a separating hyperplane with maximum
margin there. Thisyieldsa nonlinear dedsion boundary in
input pace. By the use of a kel fundion, it ispossble
to compute the sparating hyperplane without expliatly
carrying out the map into the feature gpace.

pacity. It can be uniquglconstucted ly
solving a cons#ined quadttic optimiza
tion problem whose solutionv has an g
pansionw=""vx; in tems of a subset of
training patems tha lie on the magin (see
Figure 1).These taining patems,called
suppot vectos, cary all relevant informa
tion aout the tassifcation problem.

Omitting the details of the caleu
lations,there is just one arcial popety
of the algrithm tha we need to empha
size: both the quadtic programming
problem and theifal decision function
Fx)=sign(y ;vi(xx;) +b) depend ony on
dot products betwen p&ems.This is
precisey wha lets us gnealize to the
nonlinear case

Feature spaces and kernels
Figure 2 shavs the basic idea of SV ma
chines,which is to ma the d#a into some

other dot poduct space (called theaure
space F via a nonlinear ma
®:RN_F, (4)
and perbrm the &ove linear algrithm in
F. As I've notedthis only requires the
evaludion of dot poducts.
k(x,y):=(@(x) [(y)). (5)
Cleaty, if Fis high-dimensionathe iight-
hand side of Equion 5 will be \ery expen
sive to computeln some casebpwever,
there is a simpléermel kthat can be ealu-
ated eficiently. For instancethe poyno-
mial kemel
k(,y)=(x3)? (6)
can be shan to corespond to a nd
into the space spanned all products of

exactly d dimensions oRN. For d=2 andx,
yOR?, for exkample we hae

oo - PR

D¢ 00 ¢ O

\/— X1X2 [%I y1y2 (7)

:(‘D(X) [(y)),

defining d(x) = (x2,V2xx,, x3). More gen
erally, we can pove tha for every kemel
tha gives ise to a positie marix (K(X;,X;));.
we can congict a mp® sud tha Equa
tion 5 holds.

Besides Equion 6,SV practitiones use

radial basis function (RBF)emels sub as

k(x,y)=expt|x - y|f / (202)), (8)

and sigmoid kmels (with @ink and ofset
©)

k(x,y)=tanhf(x ) + ©). ©)
SVMs

We nav have all the tools to consitt
nonlinear tassifers (see Bure 2).To this
end we substitut&d(x;) for ead training
examplex;, and perbrm the optimal yiper
plane algrithm inF. Because w ae using
kemels,we will thus end up with nonlinear
decision function of theofm

I
f(x):sigr(z v; IK(X, X;) + b).
i=1
The paametesv; are computed as the so
lution of a quadatic programming
problem.

In input spacgthe typemplane cores
ponds to a nonlinear decision function
whose brm is detemined ly the lemel
(see kgures 3 and 4).

The algrithm I've desdbed thus &r has
a rumber of astonishing ppeties:

(10)

» Itis based on stistical leaning theoy,

» ltis practical (as iteduces to a quad
ratic programming poblem with a
unique solution)and

» It contains a amber of moe or less
heuistic algorithms as special casdsy.
the dhoice of diferent kemel functions,
we obtain diferent achitectues (Fg-
ure 4),suc as poynomial dassifers
(Equdion 6),RBF dassifers (Equaéion
8 and kgure 3),and thee-layer neual
nets (Equton 9).

The most impdant lestiction up to nav
has been thave were only consideing the
case of tassifcation. Havever, a geneal-
ization to regression estiman—tha is, to
yOR, can be @ven. In this casehe alg-
rithm tries to constict a linear function in
the feaure space suctha the taining
points lie within a distance> 0. Similar to
the patem-recqnition casewe can wite
this as a quadtic programming poblem
in tems of lemels.The nonlinearegres
sion estimte tales the érm

I
f(x)=3 v k(x;,x) +b
i=1

(11)
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Fgure 3. Example of an S/ dassifier found by using a radial basisfundion kernel (Eguation 8). Grdes and disksare
two dassesof training examples; the solid line is the dedsion surface; the support vectors found by the algorithm lie
on, or between, the dashed lines (lors aode the modulus of theargument S, v; Tk(x, x;) + b of thededsion
fundion in Eouation 10.

al| = |) Output  o(X v,k (x,x,)) .
v, v, v Weights

() () () Dot product (®(x)- (X)) = k(X,X,)

} A
D(x,) D(x,))| | P(x) ®(x,)|  Mapped vectors ®(x;), P(x)

A A * A

4 1 Support vectors x; ... X,
1 Test vector x

Fgure 4. Architedture of SVmethods. The input x and the support vediorsx; (in this example: digits) are nonlinearly
mapped (by ) into a feature space F; where dot produdsare computed. By the use of the kernel k, these two layers
arein pradice computed in one single step. The results are linearly combined by weights v, found by solving a qua-
draticprogram (in pattern recognition, v; = yat;; in regression etimation, v; = o*; — ;) 2 or an eigenvalue problem
(in kernel R¥). The linear combination isfed into the fundion & (in pattern reaognition, a(x) = sign(x + b); in
regression stimation, 6(x) = x+ by inkernel A 6(X) = x.

To goply the algrithm, we either
specifye a piiori, or we specify an
upper bound on thedction of taining
points allaved to lie outside of a dis

Current developments and open
issues

Chances arthd those eades who ae

respectseveral fields hae emeged

Training methodsdr speeding up the
quadetic program,sud as the one de
sciibed lger in this installment of
Trends & Contoversies ly John Plat.
Speeding up thevalugion of the deci
sion function is of integst in a arety
of gpplicdions,suc as optical-bamlc
ter recagnition8

The doice of lemel functionsand
hence of thedaure space to wk in, is
of both theoetical and pactical inter
est. It detamines both the functional
form of the estimi andvia the objee
tive function of the quadtic program,
the type of egulaiization tha is used to
constain the estimiz.”-8 However, even
though diferent kemels lead to dfer-
ent types of leaing madines.the
choice of lkemel seems to be lesaicial
than it mg appear &first sight. In OCR
applicaions,the kemels (Equtions 6,
9, and 8) lead toery similar perbr-
mance and to singly overlapping sets
of suppot vectos.

Although the use of SV methods ip-a
plications has oyl recenty begun,ap-
plication developes have aleads re-
ported stée-of-the-ar performances in a
vaiiety of gplications in pdtem recay-
nition, regression estint#n, and time
seies pediction. Havever, it is proba
bly fair to sg tha we ae still missing
an gplication where SV methods sig
nificantly outperbrm ary other &ail-
able algorithm or sohe a poblem tha
has sodr been impossib to takle. For
the later, SV methodsdr solving in
verse ppblems ae a pomising candi
date.® Sue Dumais and EdgOsuna
descibe piomising gplicaions in this
discussion.

Using kemels br other algrithms
emepges as anxeiting oppotunity for
developing nev leaning tediniques.
The kemel method ér computing dot
products in &gure spaces is noér
sticted to SV makines.We can use it
to deive nonlinear gnealizaions of
ary algorithm tha can be cast in tars
of dot poductsAs a mee stat, we
decided to pply this idea to one of the
most widey used algrithms for daa

tancee from the egression estimtz
(asymptoticaly, the rumber of SVs)
and the caresponding is computed
automaically.5

still with me might be intersted to hear
how reseachers hare tuilt on the &ove,
applied the algrithm to real-world prob-
lems,and deeloped &tensions. In this

anaysis,principal component angsis
This leads to &mel PCA3 an algrithm
that performs nonlinear PCAycary-
ing out linear PCA indaure spaceThe
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method consists of solving a linear
eigervalue poblem for a marix whose
elements a& computed using theekel
function.The esulting aure extrac

| SusanT. Dumaisis a senioreseacher in the Decisioitheory andAdap-

tive Systems Gup & Microsoft Reseah. Her eseath inteests intude
algorithms and intedces 6r improved information retrieval and tassifca-
tion, human-computer intaction,combining seah and naigation, user
modeling individual differencescollaboretive filtering, and oganizaional
impacts of ne/ technolagy. She eceved a B\ in mahemaics and psyieol-
ogy from Baes Collge and a PhD in gwitive psytology from Indiana

= University. She is a member of theCM, theASIS, the Human Ectos and

Ergonomic Societyand the Psymonomic SocietyContact hertaMicrosoft

tors have the same ahitectue as SV
madines (seeigure 4).A number of
reseathers hae since stded to“ker-
nelize” various other linear alyrithms.
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tive Systems ®up,Microsoft Reseah
As the wlume of electnic information
increasesthere is gowing inteest in deel
oping tools to help people betterd, filter,
and mange theseesouces.Text caegoriza-
tion—the assignment of haal-languge
texts to one or ma predefned caegories
based on their content—is an imfamt com
ponent in mayinformation organizaion
and mangement tasks. Mduine-leaning

eosuna@uste.

gmdde/~bs.

methodsincluding SVMs have temendous
potential br helping people merefectively
organiz electonic resouces.

Today, most tet caegorization is done i
peopleWe all sze hundeds of fles, e-mail
messges,and URLSs in 6lders every day.
We ae often askd to tioose kywords
from an aproved set of indeng tems for
descibing our tetinical pultications. On a
much larger scaletrained specialists assign
new items to ctegories in lage taxonomies
sud as the Dwey Decimal or Libary of
Congess subject headinddedical Subject
Headings (MeSH)rYahoo!s Intenet di
rectoly. Between these tavextremespeople
organiz objects into dagories to suppdra
wide variety of informaion-man@ement
tasksjncluding information routing/ilter-
ing/pushjdentification of objectionale
materials or junk mailstructured seash and
browsing and topic identitation for topic-
specifc processing opetions.

Human céegorization is \ely time-con
suming and cost] thus limiting its @plica
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bility—especialy for large or epidly
chandng collections. Consequentinter-
est is gowing in developing teéinolagies
for (semi)automigc text caegorization.
Rule-based@proadtes similar to those
emplo/ed in xpett systems hae been used
but they geneally require mamal constnc
tion of the nles,make rigid binary deck
sions &out caegory membeship,and ae
typically difficult to modify. Another stat-
egy is to usenductive-leamingtechniques
to automécally constuct dassifers using
labeled taining daa. Reseahers hae -
plied a gowing number of leaning ted-
niques to tet caegorization, including
multivaniate regressionneaest-neighbor
classifers, probabilistic Bayesian models,
decision teesand neual netvorks?Re-
cently, my collegyues and | and othehare
used SVMsdr text categorization with
very promising esults®#In this essgp |
briefly descibe the esults of &peliments
in which we use SVMs tolassify nevswire
stoiies flom Reutes*
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Table 1. Break-even performance for five learning algorithms.

Finpsim Nave Baves BavesNers TREES LiINeaeRSVM

(%) (%) (%) (%) (%)

earn 92.9 95.9 95.8 97.8 98.0

acq 64.7 87.8 88.3 89.7 93.6

money-fx 46.7 56.6 58.8 66.2 74.5

grain 67.5 78.8 81.4 85.0 94.6

crude 701 79.5 79.6 85.0 88.9

trade 65.1 63.9 69.0 72.5 75.9

interest 63.4 64.9 71.3 67.1 71.7

ship 49.2 85.4 84.4 74.2 85.6

wheat 68.9 69.7 82.7 92.5 91.8

corn 48.2 65.3 76.4 91.8 90.3

Avg. top 10 64.6 81.5 85.0 88.4 92.0

Avg. all 61.7 75.2 80.0 N/A 87.0

1
B ) LSVM
Naive Bayes

0.8

_ 06 - Decision tree

S
@ i
3
o 04 -
0.2 ) -
Find similar
0 T T T T
0 0.2 0.4 0.6 0.8 1
Recall

Fgure 5. ROCaurve.

Learning text categorizers

The gal of autom8c text-caegoriza-
tion systems is to assignwméems to one
or mote of a set of mdefned caegories on
the basis of their f¢ual content. Optimal
caegorization functions can be leaed
from labeled taining examples.

Inductive leaming of dassifiers. A classt
fier is a function thiemaps an input #ri-
bute ector X = (Xq, Xp, X3, ..., Xy), t0 the
confidence thathe input belongs to a
class—thais, f(X') = conidence(tass) In
the case of t classifcation, the dtributes
are words in the document and thiasses
are the ceegories of inteest (br example
Reutes cdegories indude“interest;
“eamings; and“grain”).

Example tassifers for the Reutey cde-
gory interest ae

« if (interestAND rate) OR (quatenly), then
confidence (“inteest”caegory) = 0.9

< confidence (“inteest” caegory) =
0.3*interest + 0.4*gte + 0.7*quatedy

The ley idea behind SVMs and otherin
ductive-leaning gproades is to use adin
ing set of ldeled instances to leathe tas
sification function automigcally. SVM
classifers resemke the secondample
above—a \ector of leaned Baure weights.
The lesulting tassifers ae easy to consict
and updee, degpend ory on information tha
is easy br people to pvide (thad is, exam
ples of items thzare in or out of ceegories),
and allav uses to smoothyt trade of preck
sion and ecall d@ending on their task.

Text representdion and feaur e selee
tion. Each document isgpresented as a
vector of words, as is typicaly done in in
formation retrieval > For most tat-retrieval
applicaions,the enties in the ector ae
weighted to eflect the fequenyg of tems
in documents and the diitution of tems
acmoss the collection as ahwle For text

classifcation, simpler binay feaure values
(a word either occus or does not occur in a
document) & often used instead

Text collections containing millions of
unique tems ae quite commonThus,for
both eficiengy and eficagy, feaure selection
is widely used vhen gplying madine-
leaming methods to & caegorization. To
reduce the mmber of &aures,we first re-
move fedures based onverall frequeng
countsand then select a smalimber of
feaures based on theit fo caegories.We
use the ratual inbrmation between eale
feaure and a dagory to futther educe the
fegure spaceThese mch smaller document
desciptions then see as input to the SVM.

Learning SVMs.We used simple linear
SVMs because tlyegprovide good geneal-
ization accuacy and ae fast to leam.
Thorsten dacims has eplored two dasses
of nonlinear SVMs—pginomial dassifers
and mdial basis functions—and obged
only small bendfs compaed to linear
models® We used dhn Pldt’s Sequential
Minimal Optimizaion method (descibed
in a lder essy) to lean the \ector of a
ture weights, W. Once the wights ae
leamed new items ag dassifed by com
putingX b7 where W is the \ector of
leamed veights,andX is the binay vector
representing a ne documentWe also
leamed two paametes of a sigmoid func
tion to tmansbrm the output of the SVM to
probabilities.

An example—Reuters

The Reutes collection is a popular one
for text-caegorization reseach and is pub
licly available a http://wwwreseach.att.
com/~levis/reutess21578.htmWe used
the 12,902 Reutsrstoies tha have been
classifed into 118 ctegories. Following
the ModApte splitwe used 75% of the
stoiies (9,603 staes) to lild classifers
and the emaining 25% (3,299 sties) to
test the accay of the esulting models in
reproducing the maunal caegory assign
ments. Stdes can be assigned to redhan
one céegory.

Text files ae automtcally processed to
produce a gctor of vords for ead docu
ment. Eliminging words tha gppear in ont
one document and then selecting the 300
words with highest mtual information with
ead caegory reduces theumber of éa
tures.These 300-element bilyafieaure vec
tors seve as input to the SVM\ separate

22

IEEEINTELLIGENT SYSTEMS




] 1015t ¢ vregsional
Distri:{\.s

missile Trange.

image, and if
there ag, retun
an encoding of
their locdion.
The encoding in
this systemis to
fiteadh face ina
bounding ba

A iy Washington D.C.
Toblem: solution:
classifer W) is e - .-
leamed br eat - +*+ - -
category. Using * -
SMO to tain the o -
linear SVM tales an - = _" -
average of 0.26 + - < - 3 -
CPU seconds per [ 1__/
caegory (averaged
over 118 ctegories)

on a 266-MHz Entium Il unningWindows
NT. Other leaning methods & 20 to 50
times slover. New instances ardassifed by
computing a scerfor eat document ¥ W)
and compang the scae with a leaned
threshold New documentsxeeeding the
threshold ae said to belong to thetegory.

The leaned SVM dassifers ae intu
itively reasonhble. The weight \ector br
the caegory “interest”includes the wrds
prime (.70)rate (.67),interest (.63)rates
(.60),and discount (.46yyith large posi
tive weights,and the wrds goup (—.24),
year (—.25)sees (—.33) wrld (—.35),and
dirs (-.71)with large nejative weights.

As is typical in galuaing text catego-
rization, we measur dassifcation accu
ragy using the gerage of pecision and
recall (the so-called baleven point). Pe-
cision is the pppottion of items placed in
the caegory tha are really in the caegory,
and ecall is the popotion of items in the
caegory tha are actualy placed in the da
egory. Table 1 summaees micoaveraged
brealeven perbrmance 6r five leaning
algorithms eplored by my colleggues and
| explored for the 10 most &quent cte-
gories,as well as the verall scoe for all
118 caegories?

Linear SVMs vere the most accete
method averaging 91.3% br the 10 most
frequent ctegories and 85.5%wer all 118
caegories.These esults ag consistent
with Joachims’results in spite of substan
tial differences in tet preprocessingtemrm
weighting and paameter selectiorsug
gesting thathe SVM gproad is quite
robust and gneally gpplicable for text-
caegorization problems3

Figure 5 shavs a epresentéive ROC
curve for the céegory “grain’ We geneste
this cuwve by varying the decision tleshold
to produce higher mcision or highere
call, depending on the tashe adantayes
of the SVM can be seewer the entie
recall-pecision space

Summary
In summay, inductive leaning methods

offer gea potential to suppoflexible, dy-
namic and pesonalizd information access
and mangement in a wideatiety of tasks.
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This essgintroduces an SMVm@plica-
tion for detecting ettically oriented and
unocduded fiontal vievs of humandces in
gray-level images.This gplicaion handles
faces wer a wide ange of scales and avks
under diferent lighting conditionsgven
with modegtely strong shadws.

We can dehe the fce-detection pb-
lem as bllows. Given as input an arbéry
image, which could be a digized video
signal or a scanned phgraph, detemine
whether thez ae ary human &ces in the

defined ly the
image coodinates of the carers.

Face detection as a computésion task
has maw applications. It has diect ele
vance to thedce-ecanition pioblem, be-
cause theirfst impotant st@ of a fully au
tomatic human &ce ecanizer is usualf
identifying and locting faces in an un
known image. Face detection also has-po
tential gplication in human-computer in
terfacessuveillance systems&nd census
systemsfor example

For this discussiorface detection is also
interesting as anample of a nral and
challendng problem for demonsgting and
testing the potentials of SVMs. Maother
real-world object ¢tasses and phenomena
shae similar haacterstics—for example
tumor anomalies in MRI scans ancdustr
tural defcts in maanfactued pats.A suc
cessful and gneal methodolgy for find-
ing faces using SVMs shoul@gerlize
well for other sptally well-defined pa-
tem- and &dure-detection pyblems.

Face detectiorike most object-detection
problems,is a dificult task because of the
significant patem variations tha are had to
paameteize anaytically. Some common
souces of pem varations ae facial g-
peaance expressionpresence orl@gence of
common stuctural feagures sub as glasses or
a moustalee and light-soute distibution.

This system wrks by testing candida
image locdions for local patems tha ap-
pear like facespsing a tassifcation proce
dure tha detemines vhether a tyen local
image pdtem is a ice Therefore, our g-
proad comes gthe face-detection phlem
as a (assiication problem gven by exam
ples of tw dassesfaces and noates.

Previous systems

Reseathers hare pproadied the &ce-
detection poblem with diferent teciniques
in the last éw yeas, including neual net
works 2 detection of ice &aures and use
of geometical constaints? density estima
tion of the tining d#alabeled gaphs®
and dusteing and distibution-based mod
eling. 87 The esults of Kah-Kg Sung and
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Non-faces

Faces

Figure 6. Geometrical interpretation of how the SM separatesthe face and nonface dasses. The patternsare real
Support vedors obtained after training the system. Notice the small number of total support vedorsand thefadt that a

higher proportion of them corregpond to nonfaces.

examplesin the training process.

Tomaso Bggio®” and Heny Rawley? re-
flect systems withety high detectionates
and lav false-positie detectionates.
Sung and Bggio use tusteing and dis
tance mefcs to model the distyution of
the face and nomfce manifld and a newa
network to dassify a ne/ pattem gven the
measuementsThe key to the quality of

Fgure 7. False detections obtained with the first version of the system. These false positiveslater served asnonface

their result is the lusteing and use of
combined Mahalanobis and Higean met
rics to measw the distance ém a nev
patem and the lustess. Other impadant
feaures of their pproad ate the use of
nonface tustes and a bootsipping tet-
nique to collect impaant nonéce paems.
However, this goproat does not mvide a

principled way to choose some imptant
free paametes sut as the nmber of tus-
ters it uses.

Similary, Rowley and his collegues hae
used poblem information in the design of a
retinally connected neaf netvwork trained to
classify face and nomafce ptems.Their -
proad relies on taining seeral neual net
works emphasizing sets of thaitring daa to
obtain diferent sets of wights.Then,their
approad uses dferent sbiemes of arbige
tion between them togad a fnal ansver.

Our SVM gproad to the &ce-detection
system uses noipr informaion to obtain
the decision sudtce this being an interst
ing propety tha can be gploited in using
the same pproad for detecting other ab
jects in digtal images.

The SVM face-detection system

This system detectaées § exhaus
tively scanning an inge for face-like pa-
tems d@ mary possilte scalesby dividing
the ofginal image into avedapping subim
ages and kassifying them using an SVM to
detemine the apropriate dass—#hce or
nonface The system handlesuttiple
scales i examining windavs talen fom
scaled ersions of the aginal image.

Cleaty, the major use of SVMs is in the
classifcation ste, which is the most dfi -
cal pat of this work. Fgure 6 dves a go-
metiical inteipretaion of the vay SVMs
work in the contgt of face detection.

More specitcally, this system wrks as
follows.We train on a debase of &ce and
nonface 1%19 pixel patems,assigned to
classes +1 and —fespectiely, using the
suppot vector algrithm. This piocess uses
a second-dgee homgeneous pginomial
kemel function and an upper bou@d=
200 to obtain a pegtt tiaining eror.

To compensi for cetain souces of
image variation, we perbrm some pepro-
cessing of the da:

* Masking A binary pixel mask emoves
some piels dose to the windw-patem
bounday, allowing a eduction in the
dimensionality of the input spacem
19x 19 = 361 to 283This ste reduces
badkground pétems thaintroduce un
necessarnoise in the &ining pocess.

 lllumination gradient corection The
process sub#cts a bestitfbrightness
plane fom the unmastd windav pixel
values allowing reduction of light and
heary shadwvs.
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Input image Extracted window  Light
pyramid (19x19 pixels) correction

%)

Histogram
equalization

Classification using
support vector machines

SVM quick discard
possible-face/non-face

l If possible face{

SVM complete classifier
face/nonface

Preprocessing

Figure 8. §/dem architedture at runtime. (Used with permission.2)

» Histogram equalizéion: Our piocess
performs a histgram equalizéion over
the patems to compensa for differences
in illumination brightness and diérent
cameas’response cuves,and so on.

Once the prcess obtains a decision su
face though taining it uses theuntime
system wer images thado not contain
facesstoiing misdassifcations so tha
they can be used asgetive examples in
subsequentaining phases. Inges of
landscaes,trees buildings,and ocks, for
example are good souces of alse posi
tives because of the madifferenttextured
patems thg contain.This bootstapping
step, which Sung and &ygio® successfuit
usedis very impottant in the contd of a
face detector thdeans flom examples:

» Although ngative examples a& sbun-
dant,negative examples thaare useful
from a leaning standpoint ar\ety dif-
ficult to characteize and dehe.

* By approading the poblem of object
detectionand in this case ofte de
tection,by using the padigm of bi
nalty patem dassifcation, the two
classes—object and nonobject—earot
equally comple. The nonobjectlass
is broader andicher, and theefore
needs ma examples to gt an accuate
definition tha separates it fom the
object dass. kgure 7 shavs an imge
used br bootstapping with some mis
classifcations tha later seved as nga-
tive ekamples.

After training the SVMusing an imple
mentdion of the algrithm my colleagues
and | desdbe elsevhere8 we incoporate it
as the lassifer in a untime systemety
similar to the one useq ISung and &y-

gio.>81t performs the bllowing opeations:

* Rescale the input inge seeral times;

e Cut 1%19 windav patems out of the
scaled imge;

* Preprocess the winde using masking
light comection and histgran equaliza
tion;

» Classify the piem using the SVM; and

 If the dass coresponds to aafte draw

a regtangle aoung the &ce in the output Q

image.

Figure 8 eflects the systers’achitec
ture & runtime

Experimental results on static
images

To test theuntime systemye used tw
sets of imges. SefA contained 313 high-
quality images with the sameumber of
faces. Set B contained 23 iges of mixed
quality, with a total of 155dcesWe tested
both setsfirst using our system and then
the one ly Sung and 8ggio. > To gve
true meaning to theumber of &lse posi
tives obtaineghote tha setA involved
4,669,960 ptiem windavs,while set B
involved 5,383,682Table 2 compaes the
two systems.

Figure 9 pesents some output iges of
our systemwhich were not used dimg the
training phase of the system.

Extension to a real-time system
The system e discussed saf spends
approximately 6 seconds (Spestaion 20)
on a 326:240 piels gay-level image. Al -
though this isdster than most prious
systemsit is not fast enoughdr use as a
runtime systenilo kuild a untime \ersion
of the systemywe took the dllowing steps:

* We poted the C code deloped on the
Sun erironment to &Vindows NT
Pentium 200-MHz computer and ded

Ay

\ 5’;\)

&
]

18 ,l“'i»,.
Figure 9. Resultsfrom our face-detedtion sygem.

Table 2. Rerformance of the SIM face-detection system.

TesTseTA TestseTB
DeteCT DeteCT
RATE  FALSE RATE  FALSE
(%) aaRms (%) ALARMS
SVM 97.1 4 742 20
Sung 94.6 2 742 11

a Marox RGB frame gabber and a
Hitachi three-dip color camea. We
used no special hdware to speed up
the computtonal turden of the system.

¢ We collected seeral color imaes with

facesfrom which we etracted agas
with skin and nonskin pets.We cot
lected a daset of 6,000x@mples.
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Fgure 10. An example of the skin detedion module
implemented using SIVs.

Figure 11. Face detection on the FGbased Golor Real-
Time sysem

« We trained a SVM lassifer using the
skin and nonskin da. The input \ari-
ables were nomalized geen anded
values—qg/(r+g+b) and r/(r+g+ke-
spectvely. Fgure 10 pesents an inge
ceptured by the system and its aer

sponding skin-detection output.

* We coded aery primitive motion de
tector based on thsholded fame dif
ferencing to identify aas of meement
and use them as thedus of &ention.
Motion was not aequiement to be de
tected ly the system becauseegy so
mary frames (20 in the crent imple
mentaion), we skipped this sgeand
scanned the hole imae.

« We put tgether a hiarchical system
using as aiffst stg the motion-detection
module We used the SVM skin-detec
tion system as secong/k to identify
candid#e locaions of icesWe used the
face/nonfice SVM tassifer descibed |
descibed ealier over the gay-level ver-
sion of the candida locdions.

The whole system dteves etes of 4 to
5 frames per seconéfigure 11 pesents a
couple of imges ctured ky our PC-based
Color Real-Tme face-detection system.
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HOW T TR PICT T SYRTS

John PIldt, Microsoft Reseah

In the pastéw yeas, SVMs hae pioven
to be \ery effective in real-world classifca
tion tasks?! This installment ofirends &
Contoversies desdbes two of these tasks:
face ecaynition and t&t caegorization.
However, mary people hee found the o-
meiical implementton of SVMs to be
intimidating. In this essg | will attempt to
denystify the implementigon of SVMs.As
a first stg, if you ae inteested in imple
menting an SVM| recommendeading
Chiis Buiges'tutorial on SVMs? available
at http://svm.eseach.bell-labs.com/
SVMdochtml

An SVM is a paameteized function
whose functionaldrm is defned bebre
training Training an SVM equires a la
beled taining setpbecause the SVM wilitf
the function fom a set of eamplesThe
training set consists of a setdExamples.
Ead example consists of anput vector
X, and a lael,y;, which descibes whether
the input ector is in a prdefned caegory.
Ther aeN free paametes in an SVM
trained withN examplesThese pametes
are calledn;. To find these pametes, you
must sole a quaditic programming (QP)
problem:

o1 N N
minimize E.Zaiqjaj —Z ai;
i,j=1 i=1
N
subjecto 0<q; < Candz yia; =0
i=1

where Q is anNxN matrix tha depends
on the taining inputs;, the lbelsy;, and
the functional érm of the SVM.We call
this poblem quadratic programmingbe
cause the function to be minireid (called
theobjective functior) dgpends on the;
quadatically, while a;only appeas lin-
eaty in the constints (seélttp://www-
c.mcs.anl.
gov/home/otc/Guide/Optil/contiruous/
constained/qpog). Defnitions and ppli-
cations ofx;, y;, a;, andQ appear in the tu
torial by Burges?

Conceptually, the SVM QP poblem is to
find a mininum of a bavl-shaped objectie
function.The seah for the mininum is
constained to lie within a cube and on a
plane The seath occus in a high-dimen
sional spaceso tha the bavl is high dimen
sional,the cube is aypercube and the
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plane is a peplane For most typical
SVM functional brms,the marix Q has
special popeties,so thathe objectie
function is either bol-shgped (positie
definite) or haslt-bottomed toughs (posi
tive semidehite), but is never sadlle-
shaed (indehite). Thus,ther is either a
unique mininum or a connected set of
equialent minimaAn SVM QP has a def
nite temination (or optimality) condition
tha descibes these minima\Ve call these
optimality conditions the Kash-Kuhn-
Tucker (KKT) conditionsand thg simply
descibe the set off; tha are constained
minima3

The alues oft; also hae an intuitve
explandion. Thete is oneay; for ead train-
ing example Ead o; detemines hav
much eat training example infuences the
SVM function. Most of the @ining exam+
ples do not &éct the SVM functiorso
most of then; are 0.

Because of its simpl®fm, you might
expect the solution to the SVM QPglitem
to be quite simpleUnfortunaely, for real-
world problems,the marix Q can be ener
mous:it has a dimension equal to them
ber of taining ekamplesA training set of
60,000 &amples will yield & matrix with
3.6 billion elementsyhich cannot easilfit
into the memay of a standa computer

We hare & least tvp different ways of
solving sub gigantic QP poblems. Rrst,
there ae QP methods thase sophistidad
data stuctures? These QP methods do no
requir the stoage of the entie Q matrix,
because thedo not need to access tlevs
or columns ofQ tha corespond to those;
that are & 0 or & C. De@ in the inner loop,
these methods onperform dot poducts
between pws or columns of and a ec
tor, rather than pedrming an entie ma
trix-vector multiplication.

Decomposing the QP problem

The other methodbf atadking the lage-
scale SVM QP mhlem is to decompose
the lage QP poblem into a sees of
smaller QP mhblems.Thus,the selection
of submérices ofQ happens outside of the
QP pakage, rather than insideConse
guentl, the decomposition method is cen
paible with standat QP pakages.

Vapnik first sugiested the decompositio
approad in a method thahas since been
known aschunking® The dunking alg-
rithm exploits the &ct tha the \alue of the
objective function is the same iby re-

h
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Fgure 12. Three alternative methodsfor training SV (a) Ghunking, (b) Ceuna’salgorithm, and (9 VIO, There are
three sepsfor each method. The horizontal thin line at every step representsthe training set, while the thid boxes
represent the o, being optimized at that step. A given group of three lines corregpondsto three training iterations,

with thefirgt iteration at the top.

move the ows and columns of the rmx Q
that correspond to ero a;. Theefore, the
large QP poblem can beak devn into a
seies of smaller QP pblems,whose ulti
mae goal is to identify all of the noam a;
and discat all of the Bro a;. At evely step,
chunking soles a QP mhlem tha consists
of the Pllowing a;: every nonzrm o; from
the last stp, and then; that corespond to
theM worst violaions of the KKT condi
tions,for some alue ofM (see kgure 12a).
The siz of the QP subpblem tends to
grow with time At the last ste, the diunk
ing goproad has identiéd the enti set of
nonzro a;; hencethe last stp soles the
overall QP poblem.

Chunking educes th€ matrix’s dimen
sion from the mimber of taining examples
to goproximately the rumber of nonero a;.
However, chunking still might not handle
large-scale @ining ppblems,becausewven
this reduced migix might not ft into mem
ory. Of cousg we can combinehunking
with the sophistided QP methods des
cribed dove, which do not equire full
storage of a maix.

In 1997, Edgar Osuna and his collgaes
suggested a n& strategy for solving the
SVM QP poblem? Osuna sheed thathe
large QP poblem can be lmken davn into
a seies of smaller QP subglems As long
as aleast one; tha violates the KKT con
ditions is aded to the pvious subpoblem,
ead st reduces the objewt function and
maintains all of the constints.Therefore, a
sequence of QP sulgitems thaalways
add a least one KKT violtor will asymp
totically converge.

Osuna sugests legping a constant siz
marix for every QP subpoblem, which
implies adling and deleting the samam-
ber of @amples aevery stg® (see figure

12b). Using a constant-giandrix allows
the tiaining of arbitaiily sized daasets.
The algrithm in Osunas paer sugests
adding one #ample and deleting ona-e
ample aevery step. Sud an algrithm
corvemes,although it might not be the
fastest posslb algorithm. In piactice re-
seachers adl and delete mitiple examples
accoding to \arious unpubshed heuis-
tics. Typically, these heustics adl KKT
violators & eat st and delete thosg
tha are either 0 oC. Joachims has pub
lished an algrithm for adling and deleting
examples fom the QP st&s,which rapidly
deceases the objewt function®

All of these decomposition methods
require a umeical QP pakage. Suth
padkages might bexpensve for commer
cial uses (see théWhere to gt the po-
grams”section) Writing your avn eficient
QP pakage is dificult without a mmei-
cal-anaysis ba&ground

Sequential minimal optimization
Sequential minimal optimiti@an is an
altemaive method thacan decompose the
SVM QP poblem without ag extra marix
storage and without usingumeical QP
optimizaion stgs37 SMO decomposes
the averall QP poblem into QP subpb-
lems,identically to Osunas methodUn+
like the pevious decomposition heistics,
SMO cooses to solvthe smallest possé
optimizaion problem & every step. For the
standad SVM QP poblem, the smallest
possilbe optimizaion problem involves
two elements ofi;, because the; must
obey one linear equality consiint. At
every stegp, SMO chooses tw a; to jointly
optimize, finds the optimalalues ér these
0;, and updees the SVM toaflect the ner
optimal \alues (seeifure 12c).
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Table 3. Fve experiments comparing VOto FGGichunking. The fundional form of the SM, training set size, (FU

times, and scaling exponentsare shown.
PCG
SMO CHUNKING PCG .
TRAINING TRAINING SMO CHUNKING lems. Puchasing fa QP pakag_e from a_
KerNEL TraNING CPU CPU SCALING SCALING well-knowvn numeical anaysis soucells
EXPERIMENT USED SET SIZE TIME (SEC.)  TIME (SEC.) EXPONENT EXPONENT the best beynless pu hare an atensve
numeical anaysis ba&ground in which
Webinear  Lnew 70 2863 17aer 18 25 case pu can oede your on QP pakage
eb linear inear , . ,164. . . .
Adult Gaussian Gaussian 11,221 7814 11,9106 2.1 2.9 Osuna and his collgaes use MINOSor
Web Gaussian ~ Gaussian 49,749  3,8635 238776 17 2.0 their QP pakage, which has licensing in
MNIST Polynomial 60,000 29,471.0 33,109.0 N/A N/A formation & http://www-lelandstanbrd.

SMO can sole for two a; analtically,
thus &oiding rumeiical QP optimiztion
entirely. The inner loop can begressed in
a shot amount of C codeather than i
invoking an entie QP libary routine Even
though moe optimizdion subpoblems ae
solved in the cowge of the algrithm, eah
subpoblem is sodst thathe werall QP
problem can be sobd quidly.

Because therae so may possilte com
binations of QP pdages,decomposition
heuistics,code optimizéions,daa stuc-
tures,and benbmaik problems,it is very
difficult to detemine which SVM alg-

chine-leaning benbimak.8 TheWeb ex-
petiment is a tgt-categorization task.The
Adult andWeb ddasets a available &
http://wwwreseach.miciosoft.com/~jpl#/
smo.htmlThe MNIST &peiiment is an
OCR benbmalk available a http://www
reseach.att.com/~y@ann/ocr/mnistThe
training CPU time is listedbf both SMO
and PCG bunking br the taining set sie
shawn in the tdle. The scaling ¥ponent is
the slope of a lineaitfto a lag-log plot of
the taining time ersus the @ining set
size. This scaling gponent aries with the
daaset usedrhe empiical worst-case

edu/~saundex/brochure/brochure.html3
LOQO is anotherabust,large-scale inte
rior-point pa&age suitdle for QP and
available for a e & http://wwwprinceton.
edu/~vdh

Finally, a piogram thaimplements da-
chims’version of Osuna algprithm 8 called
SVMlight s available freg for scientifc pur-
poses o, at http://www-ai.inbrmatik.uni-
dortmundde/FORSCHUNG/ERRHREN/
SVM_LIGHT/svm_light.eriggml. B

rithm (if ary) is the most éitient. SMO scaling br SMO is quaditic, while the References
has been comped to the standahunk empiiical worst-case scalingof PCG
ing algorithm sugyested g Burges in his chunking is cubic 1. V.Vapnik, Estimaion of Dgpendencies

tutorial.23 The QP algrithm used lg this
version of cwunking isprojected conjugte

For a linear ppblem with spase inputs,
SMO can be marthan 1,000 timester

Based on Empical Data, Spiinger-Verag,
New York, 1982.

gradient(PCG).Table 3 compaes the & than PCG bunking 2. C.JC. Buges,"A Tutorial on Suppdivec
. . . . tor Machines br Pattem Recanition;
sults_br SMO \ersus I_DCG leunking Both Joachims hc_";ls compead his algrithm submitted tdData Mining and Knavledge
algorithms ae coded in C++shae SVM (SVMlight yersion 2) and SMO on the same Discovery, 1998.
evaludion code are compiled with Mico- | daasets$ His algorithm and SMO hee 3. JC. Plat, “FastTraining of SVMs Using
softVisual C++ \ersion 5.0and ae mun on | compasble scaling with taining set sie. Sequential Minimal Optimizéon,” to be
a 266-MHz Rntium Il withwWindows NT | The CPU time of dachims’ algorithm published inAdvances in lémel Methods—
. . Suppot ector Leaning, B. Sholkopf, C.
and 128 Miytes of memay. Both algri- seemsoughy compaeble to SMO; difer- Burges,andA. Smola,eds. MIT Press,
thms hae inner loops thaake adiantaye ent code optimizions male exact compar Cambidge, Mass.,1998.
of input vectos thd contain mostl zero ison betveen the tw algorithms difficult. 4. L. Kaufman, Solving the Quaditic Pro-
entiies (tha is, spase \ectos). gramming PoblemArising in Supparvec
For moe details on this compaon,and | Where to get the programs tor Classikcation,” to be pulished inAd-
. . . . vances in i€mel Methods—Suppbvector
for moe expeiments on synthetic dasets,| The pseudocod@®f SMO is curently in Leaming, MIT Press 1998,
please consult ynupcoming pubication.? a tedinical eport available & http://www 5. E.OsunaR. Freund and F Girosi,“An
TheAdult expeiiment is an income-pdic | reseach.microsoft.com/~jpl&t/smo.htmf ImprovedTrainingAlgorithm for Suppor
tion task and is dared fom the UCIma | SMO can be quidy implemented in the VeCEOFbMaS@meISEPFOG ”'EEgI/EIII\\j/\%JT ’se*
: ; works br Signal Pocessin rkshop,
programming languge of your choice IEEE Pess,Piscdaway, N.J., 1997,pp.
using this pseudocodewould recommend 276285,
SMO if you ae planning on using linear | 6. T. badims,“Making Large-Scale SVM
- SVMs,if your dda is spase or if you want Leaming Pactical’ to be pulished inAd-
i to write yvour ovn end-to-end code vances in kmel Methods—Suppovector
Com Ing NeXt Issue o - Leaming, MIT Press,1998.
————————————————————————— If you decide to use a QP-based system o2 =P e
. . be caeful aout witing QP code gur- 7. J.C. Plat, Sequential Minimal Optimiza
Inf ormation Integration 9 9 tion: A FastAlgorithm for Training Suppor
for the Web self—thee ae mary subtle mmeical pre- Vector Matines Microsoft Reseah Tech.
cision issues wolved and you can ind Report MSR-TR-98-14Microsoft,Red
_ __ yourself in a qugmire quite apidly. Also, mond Wash.,1998. _
with esSsSgy/s b/ William Cohen, be wary of freavare QP pakages aailable 8. C.J Merz and M. Murphy, UCI Repository

Craig Knoblock, and Alon Levy

on theWeb: in my expelience sud pak-
ages tend toun slavly and might not wrk
well for ill-conditioned or ery large pob-

of Madine Leaning DaabasesUniv. of
Califomia, Irvine, Dept. Information and
Computer Sciencérvine, Calif.; http://iwww
ics.uci.edu/~mlearMLRepositor.html.
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