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ABSTRACT 
We have constructed a FPGA-based "early neural circuit 
simulator" to model the first two stages of stimulus 
encoding and processing in the rat whisker system.  Rats 
use tactile input from their whiskers to extract object 
features such as size and shape.  We use the simulator to 
examine the plausibility of the hypothesis that neural 
circuits in the rat's brain compute gradients of radial 
distance across the whisker array to make predictions about 
the environment. This prediction could be a component of a 
feed-forward signal that guides the navigation behavior of 
the rat. The use of a FPGA is highly suitable for such an 
application, because the computation involved in this 
system is a massively parallel problem. For our 
applications, we determined that a Cyclone II FPGA could 
simulate up to 14 neurons in parallel in just 265 ns 
achieving a 386-fold speedup over the software 
implementation of the same model.   

1. INTRODUCTION 
Animals use movements to acquire and refine incoming 
sensory data in order to construct meaningful 
representations of the environment. During exploratory 
behaviors, each movement an animal makes aids in the 
extraction of task-relevant sensory data. As of yet, however, 
neuroscientists have little understanding of how the body 
and brain work together to acquire, encode, and process the 
sensory data generated through movement. The dynamics 
of animal movement are difficult to simulate, and thus the 
dynamics of sensory acquisition behaviors have remained 
largely uncharacterized and unquantified.  
 It is becoming increasingly clear, however, that 
movement is as critical a part of sensing as the sensory 
receptors themselves. Some examples include eye 
movements for vision [1] and hand movements during 
touch [2]. The movements that occur during sensory data 
acquisition define the sensory input that the early stages of 
the nervous system must encode and constrain neural 
algorithms that can occur at higher levels of processing. 
Thus, development of robust computational models of the 
early stages of sensorimotor processing in active sensing 

behaviors is essential to further study sensory-motor  
relationships. 
 As an initial step towards this long-term goal, we have 
constructed a FPGA-based neural circuit simulator to model 
the early stages of stimulus encoding and processing in the 
rat whisker system, which is one particular model of active 
sensing. The purpose of this system is to examine the 
possibility that rats are using gradients of radial distance 
across the array to make predictions about the environment 
while moving. This prediction could be a component of a 
feed-forward signal to guide the rat’s navigation behavior. 
 The use of a FPGA is perfect for such an application, 
because the computation involved in this system is a 
massively parallel problem. Furthermore, a FPGA-based 
system can be easily reconfigured to test other hypotheses 
about the rat whisker system or even other sensory modes 
such as vision or audition. Our main goal is to construct a 
versatile framework, where possible computational models 
of neural processing can be tested and evaluated efficiently. 
In this paper, we will particularly illustrate the application 
of this framework to test a specific whisker sensory input 
encoding, which we hypothesize to aid navigation of rats.  
 The present manuscript is organized as follows. Section 
2 provides background on the rat whisker active sensing 
system model. Section 3 details the FPGA implementation 
of the early neural circuit simulator. We present the 
performance results in Section 4. Section 5 briefly reviews 
some related work and Section 6 concludes the paper.  

2. WHISKERS AS AN ACTIVE SENSING SYSTEM 
2.1 Neuroscience of the Whisker System 
As shown in Fig. 1 (a) rats have approximately 30 
whiskers on each side of their face [3]. When exploring 
their environment, rats sweep their whiskers back and forth 
against objects at frequencies between 5 and 25 Hz [4] in a 
behavior known as “whisking”. Using only its whiskers, 
rats can extract accurate information about object position, 
orientation, size, shape, and texture (i.e., the object’s 
spatial properties). Thus, the whisker system represents an 
efficient active-sensing system that can operate in 
complete darkness. 
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Fig. 1.   Rat whisker array and associated neural pathway. 
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Fig. 2. Probability density functions for state space encoding 
of whisker dynamics. (a) Overlapping 2D radial basis 
functions are used to completely cover the moment-
dot/velocity portion of the state space. Shaded units represent 
neurons that fire (with a particular probability) in response to 
the whisker’s presence in that particular region of the state 
space. (b) Typical firing probability of a neuron based on the 
combination of velocity and position variables. In this 
example, the firing probability for each variable axis exhibits 
a normal distribution.  

 Fig. 1 (b) illustrates that the whiskers are arranged in an 
orderly grid on the rat's face, and also shows the cylindrical 
coordinate system that is often used to describe whisker 
movements. θ is the angular position of each whisker, z is 
the height of each whisker, and r is the radial distance out 
along the whisker length. Rat whiskers do not have sensors 
along their length. Instead, mechanoreceptors are found 
only at the base of each whisker [5]. It is proposed that the 
mechanoreceptors provide information about angular 
position (θ) and angular velocity (dθ/dt), as well as the 
bending moment (M) and rate of change of bending 
moment (dM/dt) at the whisker base [6-8].  
 Given that whiskers do not have sensors along their 
length, how does the rat determine the radial distance r to 
an object? Recent work from our laboratory has shown that 
the radial distance from the base of the whisker to an object 
can be determined by monitoring the derivative of moment 
with respect to angular position [6, 9] as in  Eq. 1:   
 
   d d dtr C C

dM dt dM
θ θ= =   (1) 

 
where C is a constant related to the whisker stiffness.  
 Fig. 1 (c) illustrates how the mechanical information 
from receptors at the whisker base travels through the brain. 
The first brain stage is a group of neurons called the 
"trigeminal ganglion." The second brain stage is a group of 
neurons called the "trigeminal nucleus."  
2.1.1. First processing stage: the trigeminal ganglion. 
As described above, the mechanical information at the base 
of the whisker is thought to include θ, dθ/dt, M and dM/dt. 
However, many studies have already demonstrated that 
first-stage neurons (in the trigeminal ganglion) do not 
"purely" encode these variables. Instead, the first-stage 
neurons output a sharp voltage spike in response to 
combinations of these mechanical variables. To explain 
these earlier data, we have recently suggested that an 
individual neuron encodes a particular dynamical state of 
the whisker. For example, Fig. 2 (a) illustrates a first-stage 

neuron that responds most strongly to the combination of 
dM/dt and dθ/dt in the circular black region, and less 
strongly to combinations in the neighboring gray regions. 
The diversity of neuronal response characteristics found in 
the trigeminal ganglion, spanning the full range of all the 
variables, is highly suggestive of a distributed state space 
representation of whisker movements. Each neuron will 
have a firing probability (that is, a probability of outputting 
a voltage spike) based on different combinations of 
variables, as shown in Fig. 2 (b). It is important to note that 
neurons in the first stage of processing produce a voltage 
spike in response to deflections of one and only one 
whisker [10]. 
2.1.2. Second processing stage: the trigeminal nucleus 
Presently, very little is known about the computations that 
occur in the second stage of processing of whisker 
information, that is, in the trigeminal nucleus. However, it 
is well established that neurons of the second stage respond 
to more than one whisker [11]. This means that they will 
produce a voltage spike when any of several different 
whiskers is moved or deflected. Thus, the neurons in the 
trigeminal nuclei can be thought of as responding to 
combinations of different patterns of input across multiple 
whiskers. We have recently suggested that the neurons of 
the trigeminal nucleus may be computing spatial gradients 
of radial contact distance (r) across the array. This idea is 
based on the insight that as an animal moves through the 
environment, spatial and temporal gradients of sensory data 
are related through the velocity of the moving sensory 
surface [12]. These gradients, as expressed in the complete 
derivative, provide an inviolate mathematical description of 
information flow over moving sensory surfaces. Computing 
the complete derivative at multiple spatial scales would 
allow the animal to predict the stimulus that it will measure 



in the next sensory instant, conferring tremendous survival 
advantage.  
2.2. Computational Model of the Whisker System  
The computational model of the whisker system is divided 
according to the two-stage model of the nervous system. 
2.2.1 First stage (trigeminal ganglion) model 
Each of the roughly 30 whiskers on the rat's face has 
associated with it between 1500 and 2000 ganglion 
neurons, If our dynamical state hypothesis is correct [6], 
these neurons must cover (in a pair-wise manner) the full 
state space of [θ, dθ/dt, M, dM/dt]. This is equivalent to 
approximately 50,000 whisker-responsive neurons. 
Calculating the probability distribution shown in Fig. 2 (b) 
for each of these 50,000 neurons is already a large 
computational task, requiring a minimum of 0.394 seconds 
in MATLAB for a single input set. This would not be able 
to meet the frequency requirement of 25 Hz. In this work, 
we use only one combination of the six possible state-space 
pairs to model responses in the trigeminal ganglion, 
namely, pair-wise combinations of dM/dt and dθ/dt 
(angular velocity). The rationale for this choice can be seen 
in Eq. 1. The radial distance of object contact out along the 
whisker is related to the ratio of dM/dt and the angular 
velocity.  This means that in Fig. 2, each neuron that 
responds to a particular combination of dM/dt and velocity 
is in essence encoding a particular radial distance.  
 To reiterate, we have limited the computations in the 
present manuscript to 1/6 of those that are likely to occur 
in the real rat, modeling only neurons representing 
combinations of dM/dt and dθ/dt. In future work, the 
model will be expanded to include neuronal cell types 
covering all pair-wise combinations of state variables for 
the entire trigeminal ganglion. 
2.2.2 Second stage (trigeminal nuclei) model   
A ubiquitous feature of early neural circuits across 
modalities (vision, audition, somatosensation) is the 
presence of lateral inhibition. In simple terms, lateral 
inhibition has the effect of making a neuron respond to 
differences in input across the spatial extent of a receptor 
array, instead of to the absolute value of the input.     This is 
accomplished because the neuron's response to a central 
receptor is enhanced, while responses to surrounding 
receptors are suppressed.  The neural mechanisms of lateral 
inhibition are not relevant here. Instead, it is simply 
important to understand that there is considerable evidence 
that neurons are likely to respond most strongly to spatial 
gradients of input across a receptor sheet.   
 Our laboratory has recently suggested that the purpose 
of these gradients may be to aid the brain in computing the 
"complete derivative” [12]. In the case of the rat whisker 
array exploring a static environment, the evolution of the 
sensory flow field via the complete derivative can be 
written as a function of the radial distance r:  

         dr V r
dt

= •∇    (2) 

 In Eq. 2, V is the velocity of the rat relative to the 
object, and ∇ is the gradient operator. Eq. 2 indicates that 
computing local spatial derivatives allows prediction of the 
sensory data that will be acquired in the next sensory 
instant.   In other words, Eq. 2 would allow the rat to form a 
quantitative expectation value of the future against which it 
can match its sensory input. 
 In order for this computation to be of value, however, 
gradients will need to be computed across different length 
scales, and in different directions. In addition, sensory 
surfaces can move with different velocities, so computing 
the total derivative is likely to involve computing many 
local velocities. These requirements for massive 
parallelism to perform the computation at many different 
scales essentially mandates the use of FPGAs. 

3.  SYSTEM ARCHITECTURE 
Our neural circuit simulator system consists of four 
stages—the robotic whisker matrix, the analog processing 
stage, the serializing/MUXing and ADC stage, and the 
FPGA processing stage. Fig. 3 contains a general overview 
of the system architecture. 
3.1 The "Robotic" Whisker Matrix 
We constructed a 5x5 whisker matrix as shown in Fig. 4. 
The whiskers are separated from one another by a distance 
of 1.17 inches. This matrix collects whisker data to be 
processed. For this application, we only considered rotation 
in one plane, so we are only analyzing one dimension of 
moment using a single row of the whiskers (1x5). Whiskers 
were rotated at a fixed speed of approximately 50 deg/sec, 
mimicking the brushing of rat whiskers on a nearby surface. 
Each whisker generates a voltage reading proportional to 
the bending moment (M). This reading is similar to a signal 
a neuron would send when a whisker is bent. 
3.2 Analog Processing 
We pass the incoming voltage signals through a low-pass 
filter to suppress noise. Then, we differentiate the smoothed 
voltage data using a differentiator. Analog differentiators 
are used because they provide better accuracy by operating 
on the analog signal while saving computation resources on 
the FPGA. In turn, we can dedicate the FPGA resources to 
other data processing operations. In addition, by adjusting 
the gain of the differentiator, we can apply the division 
operation required for the calculations in the same step. 
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Fig.3. System architecture overview. 



3.3. Serializer/Multiplexer and ADC/Data Acquisition 
A serializer and MUX are necessary to pass the data into 
the FPGA because there are not enough pins to pass all the 
data in parallel. Controlled by the FPGA, the MUX selects 
signals in sequence to be converted by the ADC. This 
makes efficient use of the ADC, but incurs extra latency in 
the data acquisition phase. However, as the ADC is 
generally fast with a sampling rate usually above 100K 
samples per second [13, 14], multiplexing is a valid 
solution. 
3.4 FPGA Processing 
We used the Cyclone II FPGA on an Altera DE2 board to 
implement our system to process the voltage readings from 
the whisker matrix. We utilized the 32-bit single precision 
subtraction, 32-bit single precision multiplication, 32-bit 
single precision addition, and 32-bit D flip-flop modules 
from the IP Megafunctions in the Quartus II software to 
construct the single processing unit shown in Fig. 5. All of 
the mathematical operations are floating point operations 
to ensure that there is minimal degradation in the precision 
of the data calculations. 

The main function of the single processing unit is to 
predict and compare radial distances using simulated 
neural data provided by the robotic whisker matrix. The 
subtraction, multiplication, and addition processes are used 
to make a prediction of the next radial distance. The results 
are stored, and compared on the next clock cycle when the 
actual value is transmitted by the whisker matrix. The 
algorithm was implemented using the model described in 
Section 2.2. 

In a system where more than one whisker is present, we 
construct a new processing unit by combining several 
single processing units. For example, in the case of making 
predictions for 5 whiskers, 5 of these single processing 
units would be connected in parallel.  

As we expand the algorithm for more whiskers, more 
resources are used. In the event where we approach the 

limit of the FPGA resources, we partially serialize the 
algorithm by reusing a module that performs the maximum 
number of parallel computations on the FPGA.  

4. RESULTS  
In the following, we first present the implementation 
results of our FPGA-based neural circuit simulator. Next, 
we present how this simulator has been used for 
performing the slope prediction based on the hypothesized 
computational model. 
4.1 FPGA Performance 
We used the Quartus II 6.1 software on a Pentium M 1.6 
Ghz computer to implement the data processing algorithms 
of the neural circuit simulator. Table 1 contains the 
resource usage and the performance of the FPGA for our 
design used for predicting and comparing the radial 
distances. From the results, it is evident that the logic 
usage of the FPGA is strained when single precision data 
processing of 14 whiskers are in parallel. In the event that 
more than 14 whiskers are present, we partially serialize 
the computation by reusing the 14 parallel computation 
channels over multiple iterations.  

The number of neurons processed and resources used 
on the FPGA are directly proportional. As we increase the 
number of processing units in the system, the cycle time 
remains about the same with an average of 94.41 ns and a 
standard deviation of 0.225 ns. Each processing unit takes 
25 clock cycles to complete the computation for one 
neuron. 

We decided to compare our results with a MATLAB 
implementation, because researchers in neuroscience 
almost exclusively utilize MATLAB for their data 
processing. A Pentium M 1.6 GHz computer running 
MATLAB 7 is compared with the Cyclone II FPGA 
running our algorithm. The FPGA time to calculate a 
prediction is obtained by multiplying the number of total 
cycles (25 cycles) by the clock periods shown in Table 1. 
The overall performance improvement for 32-bit single 
precision calculations for the whiskers is shown in Table 2. 

As is evident from the results, the FPGA-based solution 
offers much better performance. In the current work, we 
only simulate one neuron for each whisker. However, 
future work may require a much larger number of neurons 
simulated for each whisker. From Fig. 6 (a), it can be seen 
that the MATLAB solution will not be able to support 
calculations for more than 50,000 neurons and still meet 
the sampling frequency requirement of 25 Hz.  
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Fig. 4. (a) Constructed Whisker Matrix and (b)one whisker. 



We have demonstrated that our FPGA implementation 
has made successful calculations using real data generated 
with the whisker matrix in shown in Fig. 4. 
4.2. Successful Slope Prediction Using the Neural 
Circuit Simulator 
Using our FPGA-based neural circuit simulator, we 
compared actual radial distances with measured radial 
distances and with predicted radial distances for a 1x5 
whisker array. We considered two different test cases—a 
flat wall and a 20-degree angled wall. 
 For the flat wall scenario, the 5 whiskers touched a 
smooth wall perpendicularly at a fixed distance of 1.29 
inches and the whiskers were moved relative to the wall to 
generate the data. As for the 20-degree angled wall, and the 
whiskers were moved at a 20-degree angle relative to the 
wall to generate the data.  
4.2.1 Predicting Slope Using the 1x5 Array 
Fig. 6 (b) shows a comparison between the actual values, 
measured values, and the predicted values for a flat wall. 

The percent error of the prediction is 6.31%. Fig. 6 (c) 
shows a comparison between the actual values, measured 
values, and predicted values for a 20-degree angled wall 
with a percent error of 13.7%.  

This high error is due to outliers in the data 
measurements and has to do with the calibration of the 
whiskers in the whisker matrix. If the outliers are 
eliminated, the percent error reduces to 3.84% for the 20-
degree sloped wall. Outliers in the data measurements 
caused by malfunctioning whiskers result in some 
significant differences between measured and predicted 
values. However, with a larger number of whiskers, these 
outliers can be easily filtered out, and the accuracy of the 
system can be improved. Our current implementation of 
the physical system is limited to a single row of 1X5 
whiskers. In the next section, we present experiments 
based on simulated data for a higher number of whiskers. 
4.2.2 Simulated Data 
For a 5x5 whisker matrix for the ideal suface shown in Fig. 
7 (a). Fig. 7 (b) shows the surface after Gaussian noise was 
added to simulate the data from the robotic whisker matrix. 
Fig. 7 (c) shows the predicted surface using our FPGA-
based simulator.  Although the prediction is clearly noisier 
than the ideal surface, the  figure demonstrates the ability of 
the the FPGA-system to reconstruct the 3D surface from a 
non-ideal input.  

Table 1. Resource Usage and Performance for Calculations. 

Neurons 

Logic Usage 

Total Memory Bits 
Clock/ 

Cycle Time Total Logic Elements Total Combinational Functions Dedicated Logic Registers 

5 
11,488 / 33,216 

(35%) 
11,111 / 33,216 

(33%) 
5,394 / 33,216 

(16%) 
536 / 483,840 

(<1%) 94.36 MHz (10.598 ns) 

10 
22,964 / 33,216 

(69%) 
22,211 / 33,216 

(67%) 
5,394 / 33,216 

(32%) 
1,072 / 483,840 

(<1%) 94.92 MHz (10.535 ns) 

14 
31,547 / 33,216 

(95%) 
30,508 / 33,216 

(92%) 
14,693 / 33,216 

(44%) 
1,459 / 483,840 

(<1%) 94.32 MHz (10.602 ns) 

25 
31,547 / 33,216 

(95%) 
30,508 / 33,216 

(92%) 
14,693 / 33,216 

(44%) 
1,459 / 483,840 

(<1%) 94.32 MHz (10.602 ns) 

100 
31,547 / 33,216 

(95%) 
30,508 / 33,216 

(92%) 
14,693 / 33,216 

(44%) 
1,459 / 483,840 

(<1%) 94.32 MHz (10.602 ns) 

500 
31,547 / 33,216 

(95%) 
30,508 / 33,216 

(92%) 
14,693 / 33,216 

(44%) 
1,459 / 483,840 

(<1%) 94.32 MHz (10.602 ns) 

50K 
31,547 / 33,216 

(95%) 
30,508 / 33,216 

(92%) 
14,693 / 33,216 

(44%) 
1,459 / 483,840 

(<1%) 94.32 MHz (10.602 ns) 

(a)      (b)              (c)  
Fig. 6. (a) Latency vs. number of neurons. (b) Flat wall scenario. (c) 20-Degree angled wall scenario. 
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Table 2. MATLAB vs. FPGA calculation times. 
Number of 
Neurons 

MATLAB Calculation 
Time   

FPGA Calculation Speedup 

5 49.1 μs 265 ns 185 
10 75.1 μs 263 ns 286 
14 102.1 μs 265 ns 386 
25 186.3 μs 530 ns 368 

100 706.0 μs 2.12 μs 333 
500 3.350 ms 9.54 μs 351 
50K 0.394 s .947 ms 416 



5. RELATED WORK 
Over the years, there has been an increasing interest in 
biologically inspired FPGA applications. Ghani et al [14] 
developed an area efficient multiplier-less hardware 
architecture for implementing the integrate-and-fire 
spiking neural networks model. C. Torres-Huitzil [15] 
developed an area-efficient implementation of the pulse-
mode neuron on a FPGA. This optimized neuron model is 
able to conserve FPGA resources without sacrificing 
desired model characteristics. A particularly related work 
is by M.J. Pearson et al. [16]. They developed a FPGA-
based system to implement spiking neural networks of the 
rat brainstem. However, their work focused primarily on 
modeling the directionally sensitive properties of the 
mechanoreceptors in the follicle, and generating realistic 
models of spiking neurons.  This work targets a specific 
model. Our work is different from theirs in that our main 
goal is to develop a FPGA-based platform that allows 
neuroscientists to evaluate different candidate neural 
algorithms. Our work contains a complete system for 
neuroscientists to gather and process the data and can be 
adapted to test possible hypotheses for neural computation.  

6. CONCLUSIONS 
In conclusion, we have demonstrated that FPGAs can be 
used to construct efficient models of massively-parallel 
neural circuits, without requiring the level of detail 
associated with spiking neurons.  It has to be noted that in 
our pilot experiment, we designed a simplified prediction 
model, which can be implemented by both a PC-based 
system and a FPGA-based system. Specifically, the present 
manuscript has addressed only a much reduced model of 
the rat whisker system, in which the rat moves in a single 
direction relative to a fixed wall. When extended across 
multiple spatial and temporal scales, with the rat 
approaching an arbitrarily-shaped wall from an arbitrary 
direction, the proposed algorithm will require a highly 
parallel and efficient system such as FPGA. 
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         (a)       (b)                  (c) 
Fig. 7. (a) Simulated ideal angled wall  (b) Simulated angled wall measured by whisker matrix (c) Predicted angled wall. 


