
International Journal of Software Engineering and Knowledge Engineering
© World Scientific Publishing Company

1

HW/SW CO-DESIGN FOR LOW POWER ARITHMETIC AND LOGIC UNITS

TAY TENG TIOW
Digital Systems and Applications
Lab. National Univ. of Singapore,

10 Kent Ridge Crescent, Singapore
119260

eletttay@nus.edu.sg

NG KAR SIN
Digital Systems and Applications Lab.

National Univ. of Singapore,
10 Kent Ridge Crescent, Singapore

119260
kar-sin.ng@hp.com

PAN YAN
Digital Systems and Applications
Lab. National Univ. of Singapore,

10 Kent Ridge Crescent, Singapore
119260

panyan@nus.edu.sg

As many embedded microprocessors are battery driven, low power design is becoming increasing
necessary. In this paper, we proposed hardware-software co-design architecture for low power
arithmetic and logic units. By including multiple functional units with same functions and different
speeds, we provide instruction implementations at various power prices. Then, with an assembler
level scheduler, we identify and create situations whereby the low-power slow functional units can
be utilized. The overall performance is not compromised as no additional stalls are introduced.
Simulations show 10%~35% power saving in typical addition operations.

Keywords: Arithmetic Logic Unit design; Instruction scheduling; Instruction interdependence

1. Introduction

The booming of portable devices like PDAs and hand-phones owes much to the rapidly
improving performance of the embedded microprocessors inside. To fit into these
battery-driven devices, microprocessors are expected not only to execute complex
functions but also to consume moderate power. Thus, low power processor design has
become a hot research area.

It is a matter of fact that the power consumption of a microprocessor is proportional
to the level of its performance. However, maximum performance is not always necessary
for most applications. Thus, power saving can be achieved by cleverly lowering the
performance level whenever feasible, leading to reduced overall energy consumption.

There are two aspects to the problem. First, hardware architectures should be
designed to allow real time switching between different power-performance modes.
Second, a software scheduler, representing the intelligence in the switching, should be
designed to make the switching decisions.

A widely used technique that falls into this scheme is Dynamic Voltage Scaling (DVS)
[1], whereby the working frequency of the microprocessor is lowered together with the
supply voltage. The decision of when to scale the supply voltage is made by at least two
approaches: by additional hardware monitoring certain execution statistics [2] or by code-
based offline analysis [3]. Such designs are already found in commercial products [4].

However, the power saving achieved by these available techniques are still less than
satisfactory. Some more aggressive methods should be taken to cut down more on the
power budget. Our design is a full hardware/software co-design. Using a novel pipelined

Tay Teng Tiow, Ng Kar Sin, Pan Yan 2
ALU architecture, we provide a knob in the core of a microprocessor for adjusting

power and performance. Together with this, we also develop an instruction re-shuffle
algorithm to squeeze the most out of the slack due to inter-dependence between
instructions.

The remaining sections of this paper are organized as follows. In sec. 2, we describe
in detail the HW/SW co-design of our system. Simulation results are discussed in Sec. 3.
Sec. 4 concludes the paper.

2. System Design

Our design focused on the ALU inside general purpose processors. The motivations are
deduced from the following:
• Through simulation, we find that the energy consumption in fast Functional Units

(FUs) is much higher than that in slower counterparts.
• There are many situations where fast FUs are not required.
To exploit the observation, we design an ALU where each arithmetic function may be
implemented by many possible FUs, each with a different power or speed ratings. Then
depending on the dependency between adjacent instructions, we optimally assign
instructions to slower lower-power FUs as long as the performance is NOT compromised.
A simple heuristic is employed in the offline assembler level scheduler to reshuffle the
instructions so that instruction interdependence are lessened and further power savings
can be achieved.

2.1. Hardware Design

2.1.1. Power statistics of functional units of different speeds

Similar to many other designs, the power saving is virtually always achieved at the price
of performance. Through simulation, we found that the power consumption of fast FUs
(i.e. adders, multipliers, etc.) is much higher than that of their slower counterparts. The
following table shows the per-execution energy and data arrivals for fast and slow FUs.
The simulation was carried out in Synopsis under .35um technology.

Table 1. Per-execution Energy and Data Arrivals for Fast and Slow Functional Units.

Functions Fast Slow Difference (percentage)

Energy (pJ) 56 23 33 (58.9%)
Addition

Data Arrival(ns) 3.77 12.00 8.23
Energy (pJ) 57 24 33 (57.9%)

Subtraction
Data Arrival(ns) 4.13 12.51 8.38
Energy (pJ) 703 394 309 (44.0%)

Multiplication
Data Arrival(ns) 8.17 27.11 18.94
Energy (pJ) 1218 1049 169 (13.9%)

Division
Data Arrival(ns) 30.26 54.68 24.42

HW/SW co-design for a low power Arithmetic Logic Unit by exploiting slack in instruction interdependence 3
It is clear from the table that slower FUs consume considerably less energy. This is

mostly because those fast FUs employs more logic circuits. Thus the internal parasitic
capacitance and the number of signal transitions are much larger than the slower
counterparts.

2.1.2. Pipeline Structure

In our design we have a pipeline structure as shown in Fig. 1. It is a generic five stage
pipeline, but is sufficient to illustrate the strategy we employ. Our focus is on the
execution stage and the write-back stage.

 Execution Stage. Here, we use multiple FUs of same functions. All the FUs are put
in parallel and controlled by the Control Unit. At each clock cycle, at most one
instruction is fed. Thus, we group all the FUs of same cycle times together and they
will share a Common Output Register. The single issuing mechanism ensured that
there will not be any conflicts in each group. As the FU cycle times vary among
groups, instruction completion will be out-of-order and multiple instructions may
complete together. Hazards are avoided by software control at the assembler level.

 Write-back Stage. As multiple instructions may complete at the same time, the
register file has multiple In-ports to support multiple write-backs [5].

With such a pipeline structure, we have multiple instructions performing a same
function but with different power prices. The assembler level scheduler will then analyze
the code and identify or create situations where arithmetic instructions can be executed
with lower-power version FUs.

Fig. 1. Arithmetic Logic Unit Pipeline Structure.

Tay Teng Tiow, Ng Kar Sin, Pan Yan 4
2.2. Software Design

An offline assembler level scheduler is designed to determine when to make use of the
lower-power FUs instead of the default ones. The choice of different FUs is done by
associating each FU with a different machine code. Here, the scheduler will intelligently
map a particular program instruction (PIn) to possibly different machine codes,
depending on the situation. Slower FUs will be preferred as long as it does not cause
additional stalls.

The aim of the scheduler is not only to identify the situations whereby slower FUs
can be used but also to create such situations by reshuffling instructions to resolve
interdependence with a best effort. The processing of the original program codes is done
in 2 phases.

2.2.1. Initialization

The first phase is to prepare the original codes and to convert them into a form that is
suitable for manipulation. The scheduler works on assembly language program codes.
Executable binary codes can be disassembled to generate assembly source files.

With assembly source files, the following processing is done:
 Divide the program into segments. Rescheduling of instructions is done within

sequential execution blocks only. Thus in this first step, all loops and branch
instructions are identified and accordingly segmented. Within these segments, the
execution is in sequence. The last flag-modifying instruction before a conditional
branch will be fixed to ensure the right flag is prepared for the next conditional
branch instruction. Thus after this step, long assembly programs are broken up into
relatively short segments.

 Translate into Generic Instructions. The focus of analysis is the inter-dependence
between instructions by registers. Thus, a generic instruction (Gins) form will be
used for all the instructions. The generic form includes an instruction mnemonic,
two source operands and one destination operand. PIns are classified into two
groups as shown in Table 2. Interdependence can then be matched by the source and
destination operands easily.

Table 2. Generic Instruction Mnemonics.

GIn Mnemonic Description
Xm Instructions that do not make use of the multiple FUs. m represents the cycle time.

XXX_AnBm Instructions that needs n cycles with fast FUs and m cycles with slow FUs
XXX represents adder, sub tractor, multiplier or divider.

After these initial processing, the source assembly codes will now be in the form of
segments of GIns with two source operands and one destination operand.

2.2.2. Scheduling Phase

For each segment from the initialization phase, an algorithm is used to identify or create
situations whereby lower-power FUs can be utilized.

HW/SW co-design for a low power Arithmetic Logic Unit by exploiting slack in instruction interdependence 5
Each segment is first scanned to build an inter-dependence table (IT). Each

instruction is given a serial number. For a segment of n instructions, an n*n
interdependence table is built to indicate the dependence between any two instructions.
Independent instructions are then identified and used for resolving stalls.

The algorithm is now applied to the IT as follows: (At the beginning, all instructions
are non-fixed and all XXX_AnBm type instructions will be assigned a cycle time of m.)
(i) Find the first non-independent non-fixed instruction A in the segment.

(ii) Non-fixed independent instructions nearby will be moved before or after instruction
A so that A will have a foremost position as long as it is valid. The validity of the
position must satisfy the following conditions:
(a) Backward. It is not too close to the previous instruction it is dependent on.
(b) Forward. It is not beyond the next instruction that is dependent on it.

(iii) If such a position is not found and the instruction that A is dependent on is an
XXX_AnBm type that has a faster FU available, use n as its cycle time and repeat
(ii).

(iv) Otherwise, all the instruction sequence before this position is fixed and we go back
to step (i) to process the next instruction.

The sequence is repeated until all instructions are fixed with a location. In this simple
algorithm, independent instructions are like lubricants being moved back and forth so that
XXX_AnBm type instructions will have more time to execute before the instruction that
is dependent on it arrives and hence slower FUs can be better utilized.

In this algorithm, it is guaranteed that slower FUs are used only when stall does not
occur. This is a conservative strategy to ensure the scheduler will never bring down the
overall performance. But it is still possible that stalls occur when using fast FUs. In such
cases, normal techniques to address hazard are employed, like introducing NOPs or
delaying the issuing of the stalled instruction.

With the scheduling algorithm, the actual FU choice for XXX_AmBn type
instructions are decided and marked. These instructions will be further mapped to
different machine codes for proper FUs in the final object code.

3. Simulation Results & Discussion

To test the efficiency of the scheduling algorithm, a symbolic simulation is designed to
determine the probability of applying slower FUs without compromising performance in
real programs. The samples tested are x86 assembly codes. Memory addressing modes
are taken as register operands for simplicity.

Statistics are collected all the way through the scheduling. Power savings with the
proposed ALU is estimated base on the number of instructions assigned to slow FUs and
the energy consumption differences between slow and fast FUs (as in Table 1).

Table 3 shows the number of instructions assigned to slow FUs in the target programs
and its ratio. The estimated relative energy savings with the proposed ALU is listed
alongside.

Table 3 Number of instructions assigned to use slow functional unit and estimated relative energy saving

Tay Teng Tiow, Ng Kar Sin, Pan Yan 6
Addition Subtraction Multiplication Division

Program Number of
Slow FU.

Rel. E.
Saving.

Number of
Slow FU.

Rel. E.
Saving.

Number of
Slow FU.

Rel. E.
Saving.

Number of Slow
FU.

Rel. E.
Saving.

ARJ 1451 (36.9%) 21.7% 828 (46.3%) 26.8% 78 (29.4%) 12.9% 14 (39.0%) 5.4%

PKZIP 1731 (60.6%) 35.7% 1103 (61.3%) 35.5% 65 (42.8%) 18.8% 12 (60.0%) 8.3%

PKUNZIP 1196 (60.1%) 35.4% 722 (58.5%) 33.9% 53 (51.0%) 22.4% 4 (58.8%) 8.2%

DUNZIP32 302 (17.8%) 10.5% 210 (39.3%) 23.1% 11 (37.9%) 16.7% 3 (22.9%) 3.2%

UNRAR 260 (24.6%) 14.5% 43 (15.2%) 8.8% 2 (12.5%) 5.5% 2 (22.5%) 3.1%

ACE 665 (32.0%) 18.8% 450 (36.0%) 20.8% 32 (18.7%) 8.2% 11 (32.4%) 4.5%

It is clear that a considerable percentage of arithmetic instructions can be run with
lower-power slow FUs. This is due to application of the simple yet efficient scheduler
which exploits every possible slack in the interdependence between instructions.

More over, it is found that energy savings achieved with adders, subtractors are much
more than that with multipliers and dividers. On the other hand, multipliers and dividers
take up much larger die areas. Thus, it can be seen that our proposed design is more
efficiently applied with simpler operations.

4. Conclusion

In the paper we present a hardware/software co-design for a low-power ALU. The design
is based on the fact that fast FUs consume more energy than slower ones with the same
function. An assembler level scheduler algorithm is also designed to exploit the slack in
the instruction interdependence so as to allow more time for the execution of arithmetic
instructions and hence to better utilized the slower FUs.

References

1. Thomas D. Burd and Robert W. Brodersen, “Design Issues for Dynamic Voltage Scaling”,
ISLPED 2000, Rapallo, Italy, Pgs 1 – 6

2. Woonseok Kim, Jihong Kim and Sang Lyul Min, “A Dynamic Voltage Scaling Algorithm for
Dynamic-Priority Hard Real-Time Systems Using Slack Time Analysis”, Proceedings of the
2002 Design, Automation and Test in Europe Conference and Exhibition

3. Chung-Hsing Hsu, Ulrich Kremer and Michael Hsiao, “Compiler-Directed Dynamic
Voltage/Frequency Scheduling for Energy Reduction in Microprocessor”, ISLPED’01,
California USA, Aug 6 - 7 2001, Pgs 275 – 278

4. Intel® Pentium® M Processor on 90nm Process with 2-MB L2 Cache Datasheet, June 2004.
5. Jessica H. Tseng and Krste Asanovic, “Banked Multi Ported Register Files for High-

frequency Superscalar Microprocessors”, Proceedings of the 30th International Symposium on
Computer Architecture, San Diego, California, 2003, Pgs 62-71

6. M. Powell, S. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar, “Gated-Vdd: A Circuit
Technique to Reduce Leakage in Deep-Submicron Cache Memories”, ISLPED, 2000

7. S. Borka. Design challenges of technology scaling. IEEE Micro, pages 23029, Aug 1999
8. Z. Chen, L. Wei, M. Johnson, K. Roy. “Estimation of Standby Leakage Power in CMOS

Circuits Considering Accurate Modeling of Transistor Stacks”, ISLPED 1998, pp. 239-244.
9. A. Agarwal, H. Li, K. Roy, “DRG-Cache: A Data Retention Gated-Ground Cache for Low

Power”, Proc. Design Automation Conf., 2002, pp.473-478.

