
International Journal of Software Engineering and Knowledge Engineering 
© World Scientific Publishing Company 

1 

HW/SW CO-DESIGN FOR LOW POWER ARITHMETIC AND LOGIC UNITS 

TAY TENG TIOW 
Digital Systems and Applications 
Lab. National Univ. of Singapore,  

10 Kent Ridge Crescent, Singapore 
119260 

eletttay@nus.edu.sg 

NG KAR SIN 
Digital Systems and Applications Lab. 

National Univ. of Singapore,  
10 Kent Ridge Crescent, Singapore 

119260 
kar-sin.ng@hp.com  

PAN YAN 
Digital Systems and Applications 
Lab. National Univ. of Singapore,  

10 Kent Ridge Crescent, Singapore 
119260 

panyan@nus.edu.sg 

As many embedded microprocessors are battery driven, low power design is becoming increasing 
necessary. In this paper, we proposed hardware-software co-design architecture for low power 
arithmetic and logic units. By including multiple functional units with same functions and different 
speeds, we provide instruction implementations at various power prices. Then, with an assembler 
level scheduler, we identify and create situations whereby the low-power slow functional units can 
be utilized. The overall performance is not compromised as no additional stalls are introduced. 
Simulations show 10%~35% power saving in typical addition operations. 
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1.   Introduction 

The booming of portable devices like PDAs and hand-phones owes much to the rapidly 
improving performance of the embedded microprocessors inside. To fit into these 
battery-driven devices, microprocessors are expected not only to execute complex 
functions but also to consume moderate power. Thus, low power processor design has 
become a hot research area.  

It is a matter of fact that the power consumption of a microprocessor is proportional 
to the level of its performance. However, maximum performance is not always necessary 
for most applications. Thus, power saving can be achieved by cleverly lowering the 
performance level whenever feasible, leading to reduced overall energy consumption. 

There are two aspects to the problem. First, hardware architectures should be 
designed to allow real time switching between different power-performance modes. 
Second, a software scheduler, representing the intelligence in the switching, should be 
designed to make the switching decisions.  

A widely used technique that falls into this scheme is Dynamic Voltage Scaling (DVS) 
[1], whereby the working frequency of the microprocessor is lowered together with the 
supply voltage. The decision of when to scale the supply voltage is made by at least two 
approaches: by additional hardware monitoring certain execution statistics [2] or by code-
based offline analysis [3]. Such designs are already found in commercial products [4].  

However, the power saving achieved by these available techniques are still less than 
satisfactory. Some more aggressive methods should be taken to cut down more on the 
power budget. Our design is a full hardware/software co-design. Using a novel pipelined 



Tay Teng Tiow, Ng Kar Sin, Pan Yan 2 
ALU architecture, we provide a knob in the core of a microprocessor for adjusting 

power and performance. Together with this, we also develop an instruction re-shuffle 
algorithm to squeeze the most out of the slack due to inter-dependence between 
instructions.  

The remaining sections of this paper are organized as follows. In sec. 2, we describe 
in detail the HW/SW co-design of our system. Simulation results are discussed in Sec. 3. 
Sec. 4 concludes the paper. 

2.   System Design 

Our design focused on the ALU inside general purpose processors. The motivations are 
deduced from the following: 
• Through simulation, we find that the energy consumption in fast Functional Units 

(FUs) is much higher than that in slower counterparts. 
• There are many situations where fast FUs are not required.  
To exploit the observation, we design an ALU where each arithmetic function may be 
implemented by many possible FUs, each with a different power or speed ratings. Then 
depending on the dependency between adjacent instructions, we optimally assign 
instructions to slower lower-power FUs as long as the performance is NOT compromised. 
A simple heuristic is employed in the offline assembler level scheduler to reshuffle the 
instructions so that instruction interdependence are lessened and further power savings 
can be achieved.  

2.1.   Hardware Design 

2.1.1.   Power statistics of functional units of different speeds 

Similar to many other designs, the power saving is virtually always achieved at the price 
of performance. Through simulation, we found that the power consumption of fast FUs 
(i.e. adders, multipliers, etc.) is much higher than that of their slower counterparts. The 
following table shows the per-execution energy and data arrivals for fast and slow FUs. 
The simulation was carried out in Synopsis under .35um technology.  

Table 1.  Per-execution Energy and Data Arrivals for Fast and Slow Functional Units. 

Functions Fast Slow Difference (percentage) 

Energy (pJ) 56 23 33 (58.9%) 
Addition 

Data Arrival(ns) 3.77 12.00 8.23  
Energy (pJ) 57 24 33 (57.9%) 

Subtraction 
Data Arrival(ns) 4.13 12.51 8.38 
Energy (pJ) 703 394 309 (44.0%) 

Multiplication 
Data Arrival(ns) 8.17 27.11 18.94 
Energy (pJ) 1218 1049 169 (13.9%) 

Division 
Data Arrival(ns) 30.26 54.68 24.42 
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It is clear from the table that slower FUs consume considerably less energy. This is 

mostly because those fast FUs employs more logic circuits. Thus the internal parasitic 
capacitance and the number of signal transitions are much larger than the slower 
counterparts. 

2.1.2.   Pipeline Structure 

In our design we have a pipeline structure as shown in Fig. 1. It is a generic five stage 
pipeline, but is sufficient to illustrate the strategy we employ. Our focus is on the 
execution stage and the write-back stage.  

 Execution Stage. Here, we use multiple FUs of same functions. All the FUs are put 
in parallel and controlled by the Control Unit. At each clock cycle, at most one 
instruction is fed. Thus, we group all the FUs of same cycle times together and they 
will share a Common Output Register. The single issuing mechanism ensured that 
there will not be any conflicts in each group. As the FU cycle times vary among 
groups, instruction completion will be out-of-order and multiple instructions may 
complete together. Hazards are avoided by software control at the assembler level. 

 Write-back Stage. As multiple instructions may complete at the same time, the 
register file has multiple In-ports to support multiple write-backs [5].  

With such a pipeline structure, we have multiple instructions performing a same 
function but with different power prices. The assembler level scheduler will then analyze 
the code and identify or create situations where arithmetic instructions can be executed 
with lower-power version FUs.  

 
Fig. 1.  Arithmetic Logic Unit Pipeline Structure. 
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2.2.   Software Design 

An offline assembler level scheduler is designed to determine when to make use of the 
lower-power FUs instead of the default ones. The choice of different FUs is done by 
associating each FU with a different machine code. Here, the scheduler will intelligently 
map a particular program instruction (PIn) to possibly different machine codes, 
depending on the situation. Slower FUs will be preferred as long as it does not cause 
additional stalls. 

The aim of the scheduler is not only to identify the situations whereby slower FUs 
can be used but also to create such situations by reshuffling instructions to resolve 
interdependence with a best effort. The processing of the original program codes is done 
in 2 phases. 

2.2.1.   Initialization  

The first phase is to prepare the original codes and to convert them into a form that is 
suitable for manipulation. The scheduler works on assembly language program codes. 
Executable binary codes can be disassembled to generate assembly source files.  

With assembly source files, the following processing is done: 
 Divide the program into segments. Rescheduling of instructions is done within 

sequential execution blocks only. Thus in this first step, all loops and branch 
instructions are identified and accordingly segmented. Within these segments, the 
execution is in sequence. The last flag-modifying instruction before a conditional 
branch will be fixed to ensure the right flag is prepared for the next conditional 
branch instruction. Thus after this step, long assembly programs are broken up into 
relatively short segments. 

 Translate into Generic Instructions. The focus of analysis is the inter-dependence 
between instructions by registers. Thus, a generic instruction (Gins) form will be 
used for all the instructions. The generic form includes an instruction mnemonic, 
two source operands and one destination operand. PIns are classified into two 
groups as shown in Table 2. Interdependence can then be matched by the source and 
destination operands easily.  

Table 2.  Generic Instruction Mnemonics. 

GIn Mnemonic Description 
Xm Instructions that do not make use of the multiple FUs. m represents the cycle time. 

XXX_AnBm Instructions that needs n cycles with fast FUs and m cycles with slow FUs
XXX represents adder, sub tractor, multiplier or divider. 

After these initial processing, the source assembly codes will now be in the form of 
segments of GIns with two source operands and one destination operand.  

2.2.2.   Scheduling Phase  

For each segment from the initialization phase, an algorithm is used to identify or create 
situations whereby lower-power FUs can be utilized.  
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Each segment is first scanned to build an inter-dependence table (IT). Each 

instruction is given a serial number. For a segment of n instructions, an n*n 
interdependence table is built to indicate the dependence between any two instructions. 
Independent instructions are then identified and used for resolving stalls. 

The algorithm is now applied to the IT as follows: (At the beginning, all instructions 
are non-fixed and all XXX_AnBm type instructions will be assigned a cycle time of m.) 
(i) Find the first non-independent non-fixed instruction A in the segment.  

(ii) Non-fixed independent instructions nearby will be moved before or after instruction 
A so that A will have a foremost position as long as it is valid. The validity of the 
position must satisfy the following conditions: 
(a) Backward. It is not too close to the previous instruction it is dependent on. 
(b) Forward. It is not beyond the next instruction that is dependent on it. 

(iii) If such a position is not found and the instruction that A is dependent on is an 
XXX_AnBm type that has a faster FU available, use n as  its cycle time and repeat 
(ii). 

(iv) Otherwise, all the instruction sequence before this position is fixed and we go back 
to step (i) to process the next instruction. 

The sequence is repeated until all instructions are fixed with a location. In this simple 
algorithm, independent instructions are like lubricants being moved back and forth so that 
XXX_AnBm type instructions will have more time to execute before the instruction that 
is dependent on it arrives and hence slower FUs can be better utilized. 

In this algorithm, it is guaranteed that slower FUs are used only when stall does not 
occur. This is a conservative strategy to ensure the scheduler will never bring down the 
overall performance. But it is still possible that stalls occur when using fast FUs. In such 
cases, normal techniques to address hazard are employed, like introducing NOPs or 
delaying the issuing of the stalled instruction.  

With the scheduling algorithm, the actual FU choice for XXX_AmBn type 
instructions are decided and marked. These instructions will be further mapped to 
different machine codes for proper FUs in the final object code. 

3.   Simulation Results & Discussion 

To test the efficiency of the scheduling algorithm, a symbolic simulation is designed to 
determine the probability of applying slower FUs without compromising performance in 
real programs. The samples tested are x86 assembly codes. Memory addressing modes 
are taken as register operands for simplicity.  

Statistics are collected all the way through the scheduling. Power savings with the 
proposed ALU is estimated base on the number of instructions assigned to slow FUs and 
the energy consumption differences between slow and fast FUs (as in Table 1). 

Table 3 shows the number of instructions assigned to slow FUs in the target programs 
and its ratio. The estimated relative energy savings with the proposed ALU is listed 
alongside.  

 
Table 3 Number of instructions assigned to use slow functional unit and estimated relative energy saving 
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Addition Subtraction Multiplication Division 

Program Number of 
Slow FU. 

Rel. E. 
Saving. 

Number of 
Slow FU.

Rel. E. 
Saving.

Number of 
Slow FU. 

Rel. E. 
Saving.

Number of Slow
FU. 

Rel. E. 
Saving. 

ARJ 1451 (36.9%) 21.7% 828 (46.3%) 26.8% 78 (29.4%) 12.9% 14 (39.0%) 5.4% 

PKZIP 1731 (60.6%) 35.7% 1103 (61.3%) 35.5% 65 (42.8%) 18.8% 12 (60.0%) 8.3% 

PKUNZIP 1196 (60.1%) 35.4% 722 (58.5%) 33.9% 53 (51.0%) 22.4% 4 (58.8%) 8.2% 

DUNZIP32 302 (17.8%) 10.5% 210 (39.3%) 23.1% 11 (37.9%) 16.7% 3 (22.9%) 3.2% 

UNRAR 260 (24.6%) 14.5% 43 (15.2%) 8.8% 2 (12.5%) 5.5% 2 (22.5%) 3.1% 

ACE 665 (32.0%) 18.8% 450 (36.0%) 20.8% 32 (18.7%) 8.2% 11 (32.4%) 4.5% 

It is clear that a considerable percentage of arithmetic instructions can be run with 
lower-power slow FUs. This is due to application of the simple yet efficient scheduler 
which exploits every possible slack in the interdependence between instructions.  

More over, it is found that energy savings achieved with adders, subtractors are much 
more than that with multipliers and dividers. On the other hand, multipliers and dividers 
take up much larger die areas. Thus, it can be seen that our proposed design is more 
efficiently applied with simpler operations. 

4.   Conclusion 

In the paper we present a hardware/software co-design for a low-power ALU. The design 
is based on the fact that fast FUs consume more energy than slower ones with the same 
function. An assembler level scheduler algorithm is also designed to exploit the slack in 
the instruction interdependence so as to allow more time for the execution of arithmetic 
instructions and hence to better utilized the slower FUs. 
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