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Abstract

Any architectural optimization aims at satisfying the end
user. However, modern architectures execute with little to
no knowledge about the individual user. If architectures
could determine whether their users are satisfied, they could
provide higher efficiency; improved reliability, reduced power
consumption, increased security, and a better user experience.
A major reason for this limitation is their input devices.
Specifically, the traditional input devices (e.g., the mouse and
keyboard) provide limited information about the user. In this
paper, we make a case for the addition of new biometric
input devices for providing the computer information about
the user’s physiological traits. We explore three biometric
devices as potential sensors: an eye tracker, a galvanic skin
response (GSR) sensor, and force sensors. We first present
two user studies that explore the link between the sensor
readings and user satisfaction when the performance of the
processor is varied as a video game is being played. In the
first study, we drastically drop the processor clock frequency
at a set point in the game. In the second study, we set
the clock frequency to randomly-selected levels during game
play. Both studies show that there are significant changes in
human physiological traits as performance decreases. More
importantly, we show that physiological changes correlate
strongly to the satisfaction levels reported by the users. Based
upon these observations, we construct a Physiological Traits-
based Power-management (PTP) system that can be applied
to existing dynamic voltage and frequency scaling (DVFS)
schemes. We apply PTP to a typical CPU-utilization-based
adaptive DVFS policy and evaluate our scheme using a third
user study. An aggressive version of our PTP scheme reduces
the total system power consumption of a laptop by up to
33.3% for an application averaged across users (18.1% aver-
aged across three applications), while a conservative version
reduces the total system power consumption by up to 25.6%
across users (11.4% averaged across three applications).

1. Introduction

The ultimate goal of any architectural optimization is to
satisfy the end user. However, the design, optimization, and
evaluation of modern computer architectures have largely left
the user out of the loop. Architects typically envision the
computing stack extending from devices at the bottom to
applications at the top. The user, who is the true top of the
stack, is often not considered during architectural decisions.
Similarly, performance evaluation is often simplified to met-
rics such as instructions per second (IPS). Although such
metrics may be convenient and easy to measure, they do not
directly correlate to user satisfaction [34].

Several trends are converging to increase the importance
of exploring user-aware computer architectures:

User-centric Applications: Batch applications are not the
sole workloads for most architectures. An increasing num-
ber of modern applications are designed to interact with a
user. Many server-side applications exist to provide services
to users over the network. Multimedia applications, video
games, and web browers are common workloads on desktop
machines. In addition, applications executing on embedded
and portable devices are inherently interactive. It is important
for architectures running such user-centric applications to be
optimized with the goal of satisfying the user.

Architectural Trade-offs Exposed to the User: Archi-
tectures should not naively execute instructions as fast as
possible. Due to thermal and power constraints, architectural
trade-offs are now directly exposed to the user in the form
of shorter battery life, decreased lifetime reliability, annoying
performance-limiting thermal emergencies, and higher oper-
ating temperatures (causing “burning-lap syndrome”). To bal-
ance the trade-off between performance and thermal/power-
related issues, it is important for architectures to tune per-
formance to, but not above, the level necessary to meet user
needs and expectations.

Optimization Opportunity: Users differ dramatically
from each other. Recent studies have shown that there is
considerable variation in user expectation and user satis-
faction relative to actual hardware performance [17], [34].
Where there is variation, there is opportunity for optimization.
Variation in user expectation has been leveraged for improv-
ing power consumption [25] and for efficiently scheduling
virtual machines [22]. The benefits result from optimizing to
individual users instead of assuming that all users are equal.

We assert that the design of modern architectures makes
it difficult (if not impossible) to implicitly infer and reason
about the end user. One only needs to observe the current
computer usage model to understand this claim. First, the
user directs the computer explicitly via input devices (e.g.,
keyboard or mouse). According to user direction, the com-
puter executes instructions to manipulate machine state. Af-
terwards, the user obtains information via output devices (e.g.,
display or speakers). Note that during this human-computer
interaction, there is a considerable asymmetry between the
information available to the user and information available
to the computer. Although the user can direct the computer
to change/view the system state at any time, the computer
executes with little any information about the user state.

In this paper, we make a case for balancing this human-
computer information asymmetry by augmenting future ar-
chitectures with new input devices that provide information



on user state. Enabling a computer to sense and perceive
user state has a number of benefits. First, understanding
user state will enable user-aware optimizations by providing
implicit user feedback. Tailoring execution to the individual
user’s “taste” will result in better efficiency and significant
benefits in power savings or increased lifetime reliability. In
addition, decisions about resource assignment (i.e., deciding
on the level of parallelism of an application running on a
chip multiprocessor) can be made more effectively. Most
importantly, computer behavior will be personalized based
upon individual expectations to improve user satisfaction.

We propose, and evaluate, the use of biometric input
devices that provide information on human state by observ-
ing physiological traits. Using physiological readings is an
intuitive first step in understanding the user; our experiments
suggest that a change in user state results in a number of
measurable physiological responses. We use an eye tracker to
measure pupil dilation and eye movement, a galvanic skin re-
sponse (GSR) sensor to measure skin resistance/conductance,
and force sensors to measure behavior. We begin with two
user studies to motivate the use of these additional input
devices. In the first, we drastically drop the CPU frequency at
a set point while a game is being played. In the second, we
randomly vary the CPU frequency across multiple settings
during game play. We show that the CPU frequency has a
significant impact on the physiological traits of the users. We
also show that the changes in the physiological traits correlate
with the satisfaction levels reported by the participants.

Based upon these observations, we then construct a Physi-
ological Traits-based Power-management (PTP) system to
demonstrate an application of these biometric input devices.
PTP may augment any existing dynamic voltage and fre-
quency scaling (DVES) scheme to make user-aware decisions.
In its current implementation, PTP adjusts the maximum
frequency by incorporating human physiological readings.
DVES is a common power saving technique available on
modern microprocessors that scales the frequency (and volt-
age) of a microprocessor to reduce power consumption. By
adding PTP to a typical CPU-utilization-based DVFS scheme,
we significantly decrease power consumption with little to no
impact on user satisfaction.

It is intuitive to imagine that the computer performance
will impact the physiological responses of users. There have
been studies showing the relationships between physiological
sensor readings and reported user emotions in response to
interaction with computer programs [26], [18]. However, to
the best of our knowledge, this is the first study in measuring
the impact of computer performance on human physiological
traits. Specifically, we make the following contributions:

o We make a case for using biometric input devices (such

as eye trackers, galvanic skin response sensors, and force
sensors) in making architecture-level decisions;

e« We show through two user studies that our selected
biometric input devices are able to detect changes in
human physiological traits as the performance is altered
during the run of an application; and

o« We demonstrate a user-aware system for augmenting
DVES and evaluate the system with another user study.

The rest of the paper is organized as follows. Section 2
discusses the biometric sensors. Section 3 presents the setup
of the user studies. Section 4 describes the first two user
studies correlating sensor readings to user satisfaction. Sec-
tion 5 discusses our prototype DVFS system for leveraging
biometric input devices. Section 6 discusses implementation
of the system and Section 7 presents our results. Section 8
describes related work and we conclude with Section 9.

2. Biometric Input Devices

To support user-aware computer architectures, computers
will require a means to understand user satisfaction. Although
it is possible to explicitly ask the user for information, this
may be annoying. The ability to implicitly determine the
degree of user satisfaction would be ideal. Unfortunately,
current architectures are not equipped to implicitly estimate
user satisfaction. This is due to a fundamental limitation of
current input devices. Traditional input devices mainly exist
to allow the user to explicitly control the machine state.
However, they provide little information about physiological
state. Without any information about user state, it is obvious
that a computer cannot reason about user satisfaction. To help
bridge this gap, we make a case for the addition of biometric
sensors in future architectures. In this work, we explore
three biometric sensors: eye trackers, galvanic skin response
sensors, and force sensors. These sensors are described in the
following sections.

2.1. Eye Tracking

Eye behavior reveals a lot of information about users’
state. We are particularly interested in pupil dilation and
pupil movement. Pupil dilation, or changes in the pupil radius
over time, has been shown to correlate to many external
and internal human factors. Studies show pupil dilation to
be related to mental workload [19], perceptual changes [10],
and positive/negative affect or emotion processing [30]. Pupil
movement provides another source of information. Even
when viewing a still image, humans do not keep their
eyes steady. Instead, the eye constantly looks around finding
interesting parts of each scene to create a larger mental
map of the whole scene. Changes in the behavior of eye
movement may also indicate higher level changes in the
scenery, or human interests/state. For example, saccades (fast
simultaneous movement of both pupils) have been linked to
boundaries of event perception [35].

We use the ASL MobileEye eye tracker, shown in Fig-
ure 1(a), for collecting eye-related information. The eye
tracker uses video-based combined pupil/corneal reflection
to track the focus of the user’s right eye. A video feed is
analyzed to extract the pupil location and pupil radius. The
data gathered is in pixels relative to the video feed, and is
sampled 30 times per second. Pupil dilation is measured by
using the pupil radius samples from the eye tracker. Pupil
movement is measured using the Euclidean distance between
consecutive samples of the pupil X-Y coordinates.

2.2. Galvanic Skin Response

Galvanic skin response (GSR) [7] measures the skin’s abil-
ity to conduct electricity. GSR is strongly, but not completely,



(a) Eye tracker.

(b) Custom-made GSR sensor.

(c) Force sensors.

Figure 1. The biometric sensors used in our experiments: (a) an eye tracker, (b) a custom-made galvanic skin response
sensor, and (c) force sensors attached to the arrow keys on the keyboard.
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(b) Playing the Need for Speed video game.

Figure 2. GSR traces of a user that capture (a) the long-term change in the GSR while a user is resting and (b) the
short-term effects when playing the Need for Speed game. The existence of the long-term effect motivates the use of

the delta GSR metric for measuring user arousal.

correlated to the conductance of sweat in sweat glands in
skin [41]. GSR acts as an indicator of the autonomic ner-
vous system reflecting both sympathetic (e.g., fight-or-flight
response) as well as parasympathetic (e.g., rest or relaxation)
response. In general, a low conductance is a sign of relaxation
and high conductance is a sign of mental, emotional, and/or
physical arousal. However, different emotions may produce
discriminable waveforms [5], [39].

We use a custom-made galvanic skin response (GSR)
sensor which is shown in Figure 1(b). The GSR sensor
consists of two probes attached to velcro strips that are
wrapped around the user’s fingers during experiments. The
two probes are wired in a voltage divider circuit for measuring
the voltage (and therefore the resistance and/or conductance)
across the skin.

GSR readings show long-term and short-term effects. For
example, two sample GSR traces for one of the authors
are shown in Figure 2; Figure 2(a) shows the GSR when
resting and Figure 2(b) shows the GSR when playing the
Need for Speed computer game. At rest, the GSR does not
stay constant. Rather, it slowly decreases over a period of 5—
10 minutes and then slowly levels out. When excited during
game play, the GSR exhibits a much more varied response.
To measure short-term changes in user arousal, and filter out
the long-term trends, we employ a metric that we call delta
GSR, which resembles the metric “hash GSR” [5]. Delta GSR
is computed by taking the difference between consecutive
samples and filtering out the negative values. When summed
over a period of time, the delta GSR serves as a metric for
the total user arousal for the time period. We sample at 30 Hz
and use a period of one second.

2.3. Force Sensors

We also use force sensors (shown in Figure 1(c)) to
collect behavioral information about the user. Studies in
keystroke dynamics have shown that keystroke patterns for a
given user are correlated with various emotional states [40].
However, the force of each key press might hold additional
information not captured by timing alone. For example, users
may press the keys harder to express annoyance, or during
times of intense involvement in game play. Also, for some
applications, the range of keys involved is quite limited, and
force may provide more information than keystroke patterns.
In this work, we study the correlation between keystroke force
and user satisfaction.

We use force-sensitive resistors to instrument each of the
four arrow keys, as shown in Figure 1(c). The force sensors
are measured using a voltage divider circuit. The maximum
pressure value among all measured keys yields a single metric
for comparison, which we will refer to as MaxArrow. The
sampling rate is 30 Hz.

2.4. Sensor Metrics

We measure four readings from the biometric input
devices: pupil dilation, pupil movement, delta GSR, and
arrow-key force. As we gather these readings, we sum-
marize them using various statistics. For each reading,
we consider the maximum, arithmetic mean, and the vari-
ance of the readings every second. We define the term
sensor metric to be a specific combination of a statis-
tic and a biometric reading. We format sensor metrics
as follows: <statistic>_<sensor>. For example, the
arithmetic mean of the pupil movement is denoted by
Mean_PupilMovement.



2.5. Sensor Extensibility and Cost

The intrusiveness of sensors is a major consideration for
using them as biometric input devices. Ideally, biometric input
devices will (1) not impede the use of the computer in any
way, (2) require little effort by the user, and (3) not incur
significant financial cost. We select our sensors based on these
principles. Consumer “remote eye tracking” products are
available which detect eye focus and pupil radius without a
head-mounted system. Further research into this area is likely
to lower the cost of these systems [6]. Modern laptops contain
built-in cameras and image recognition software exists for
detecting pupils [28]. The electrical components required to
measure GSR are inexpensive. While the velcro-strip contacts
may be considered too cumbersome, these contacts have also
successfully been integrated into a computer mouse in a way
that requires no explicit action by the user [42]. Integrating
force sensors into a computer keyboard would do little change
to the existing structure and piezoresistive force sensors are
inexpensive; the force sensors used for this work are currently
available for under $15 per sensor [38].

3. User Study Setup

Our experiments are done using an IBM Thinkpad T61
with a 2.2 GHz Intel Core 2 Duo T7500 processor and 2 GB
DDR2 SDRAM running Microsoft Windows XP. The laptop
is tethered to power for experiments. The processor sup-
ports seven frequency levels using Intel Enhanced SpeedStep
Technology (2.2 GHz, 1.6 GHz, 1.2 GHz, 800 MHz, 600 MHz,
400 MHz, and 200 MHz). In our experiments, we use the top
five frequencies ranging from 2.2 GHz to 600 MHz.

Data from the GSR and force sensors is collected using
a National Instruments 603E data acquisition card connected
to the PCI bus of a separate workstation. The workstation
then sends the sensor information through a TCP socket to
the laptop over a private LAN connection.

In our user studies, we use the following applications:

o Need for Speed Pro Street [3]: A 3D driving game

against the computer. The game is very CPU-intensive.

o Tetris Arena [2]: A 3-D version of the classic puzzle
game. The game consumes 100% of the CPU. How-
ever it exhibits little performance degradation as the
frequency is decreased.

e Microsoft Word 2000 Version 9.0 [1]: The user is
given a document to reproduce in Microsoft Word. In
general, Microsoft Word is not CPU intensive. However,
we include some high-quality images into the document.
Moving the images occasionally causes short bursts of
high CPU utilization.

We developed a user pool by advertising our studies within
Northwestern University. The participants come from a vari-
ety of backgrounds and include males and females, engineers
and non-engineers, as well as inexperienced computer users.

4. Correlating Human Physiological Traits with
User Satisfaction

The ultimate goal of this paper is show how human
physiological traits can be used as an implicit measure for
inferring user satisfaction. In this section, we present two

user studies exploring the link between human physiological
readings and user satisfaction.

4.1. Motivating the Use of Physiological Sensors

The first user study explores whether there are changes
in human physiological traits when the performance of the
processor is changed. One of our major concerns was that the
measurement noise during game play may mask any changes
in physiological traits. It is not difficult to imagine possible
sources of noise. For example, in a driving game, a difficult
section of tight turns may produce different measurements
than another section with a long straightaway. Due to this
concern, we first conduct a controlled initial user study with
14 users. During the study, we ask the users to play the Need
for Speed game twice. Each time, at a predetermined position
on the racetrack, we either maintain the highest frequency, or
drop the frequency to 600 MHz for 20 seconds. At 600 MHz,
the game greatly slows down. During the 20 seconds, we
measure statistics from each of the physiological sensors.

Figure 3 shows the data from three of the sensor metrics
that display significant changes in the initial user study.
Mean eye movement (shown in Figure 3(a)) decreases for
the large majority of the users. The maximum force on the
arrow keys (shown in Figure 3(b)) also registers a noticeable
decrease for most users. The maximum delta GSR (shown
in Figure 3(c)) shows a relative change for many of the
users. However, it increases for some users and decreases
for others. The difference in users may be attributed to
varying emotional reactions to a slow system: some users
become annoyed and more aroused, while others become
bored and less involved. Nevertheless, the results indicate that
both arousal-based sensors (e.g., DeltaGSR) and behavioral
sensors (e.g., MaxArrow) do indeed change significantly as
application performance is decreased.

4.2. Physiological Sensors and User Satisfaction

With the knowledge that the sensor metrics do indeed
change with performance, we conduct a second study to
explore (1) the effect of random game phases and (2) the
correlation between physiological readings at different perfor-
mance levels and user satisfaction. The users play the Need
for Speed game. This time, the processor speed is changed
to a random frequency at a random point in the game. The
change in performance lasts for 30 seconds. We randomly
visit each frequency level twice; the first time we collect
sensor metric readings, and the second time we verbally ask
the user for a satisfaction rating. Users report their satisfaction
as follows: 5 (Very Satisfied), 4 (Satisfied), 3 (Indifferent),
2 (Unsatisfied), and 1 (Very Unsatisfied).

A good sensor metric will report as different when the
user satisfaction changes and as similar when user satisfaction
remains the same. To distinguish between sensor metrics at
different frequencies, we employ a t-test-based similiarity
metric. As the physiological sensors are noisy by nature, we
use multiple samples and statistical methods. Both the data
acquisition card (collecting GSR and force information) and
the eye tracker sample at 30 Hz. Each second, we compute the
sensor metrics based on 30 samples. After discarding the first
and last five seconds of each 30 seconds interval, we have 20
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Sensor Success | False False
Data Rate Positive | Negative
Max_PupilRadius 70.2% 14.3% 15.5%
Max_MaxArrow 69.0% 13.1% 17.9%
Mean_MaxArrow 69.0% 13.1% 17.9%
Mean_PupilRadius 67.9% 11.9% 20.2%
Mean_PupilMovement 57.1% 13.1% 29.8%
Max_DeltaGSR 58.3% 9.5% 32.1%

Table 1. Outcomes of comparing the t-test-based
similarity metric and user satisfaction. Success means
that the t-test outcome matches the user rating. False

negatives occur when the t-test falsely predicts a

difference and false positives occur when the t-test

falsely predicts similarity with the highest frequency.

calculated values per sensor metric. We then use a t-test, with
a 90% confidence interval, as our metric for measuring the
similarity between sets of values from different frequencies.

We now evaluate the behavior of our sensor metrics across
multiple frequencies. For every sensor metric, we use the t-
test-based similarity metric to compare each frequency with
the highest frequency. The assumption is that if the user
is annoyed, the t-test should indicate that the two sets are
different; if the user is not annoyed, the t-test should indicate
that the two sets are similar. We then manually compare the
t-test results with the reported user satisfaction. The sensor
metric a success if (1) the t-test indicates a difference and the
user satisfaction changes, or (2) the t-test indicates similarity
and the user satisfaction does not change. False positives
occur when the t-test indicates a difference, but the user
satisfaction is the same. False negatives occur when the t-
test indicates similarity, but the user satisfaction is different.

Out of our twelve potential sensor metrics (maximum,
mean, and variance for pupil radius, pupil movement, delta
GSR, and force feedback), we develop a set of the six best
individual sensor metrics (shown with their respective counts

in Table 1). The success rates of the six sensor metrics are
all above 60% with the top three predicting similar/different
user satisfaction with nearly 70% accuracy. The false positive
rate ranges from 11.9%-14.3% and the false negative rate
ranges from about 15.5%-32.1%.! These results show that
there is a strong correlation between changes in satisfaction
and changes in the physiological readings.

To confirm our findings for the entire set of users, we
average the sensor metrics across all users and look for trends.
Figure 4 shows the averaged data for user satisfaction and the
top three sensor metrics. There is a clear correlation between
our sensor metrics and user satisfaction. For reference, the rest
of the raw data is shown in Figure 10 in Appendix A. The
sensor metrics exhibit some noise across users but, overall,
these results show that a change in user satisfaction generally
results in a change in sensor readings. This behavior, together
with the high prediction accuracy, shows that user satisfaction
and physiological traits are correlated.

We now consider the confidence level reported by the t-test
for each comparison. A high confidence level indicates that
the two sets of data being tested are different. Figure 5 shows
the average confidence levels across all users for each com-
parison. As performance decreases, confidence that the user
satisfaction is different tends to increase. This signifies that
the physiological readings differ more at lower performance
levels. However, the lowest frequency level does not follow
the same trend. We postulate that at this frequency level, the
performance is so low that some users stop caring about the
game. During the user studies, we recall users complaining
about the performance and talking to the proctor instead of

1. The false positive rate implies a lost opportunity for reducing frequency,
but no reduction in user satisfaction. Assuming that the sensors are indepen-
dent, combinations of them may be used to reduce the false negative rate.
Furthermore, any DVFS algorithm based on these sensors could treat the
sensor readings conservatively, reducing the effect of false negatives. In the
system we describe in Section 5, we use combinations of sensors and evaluate
both aggressive and conservative uses of their readings.
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playing the game. It is possible that the sensor readings may
change in such situations. Nevertheless, even for this case, the
sensor readings show significantly different behavior when
compared to the highest frequency.

An important decision we have to make is how to decide
when two readings are different. According to our subjective
observations, the Need for Speed game exhibits very similar
performance at 2.2 GHz and 1.6 GHz, but the performance
quickly decreases at lower frequencies. A confidence level of
85% makes this distinction correctly when averaging across
all users, and continues to distinguish correctly for a different
set of users in the third study. Thus, we adopt an 85%
confidence level in the t-tests for the rest of the paper.

In summary, these two initial user studies indicate that (1)
a drastic drop in performance results in noticeable changes
in our sensor metrics and (2) physiological readings can be
used to infer user satisfaction.

5. Using Physiological Traits for DVFS

To demonstrate a use of empathic inputs, we construct
a Physiological Traits-based Power-management (PTP)
system for inferring user satisfaction from physiological
readings and driving a DVFS algorithm.

The goal of PTP is to determine the minimum operating
frequency that maintains user satisfaction. Specifically, PTP
first runs a training phase with the target application (the
algorithm for the training phase is detailed in Algorithm 1).
PTP begins by comparing sensor readings at the second-
highest frequency and the readings at the highest frequency.

Algorithm 1 PTP training algorithm
Frequency: f <+ MAX_FREQ—1
while f is in frequency range do

if TestSame(MAX_FREQ, f) then

f=f-1

else if Majority vote of 3 calls to Test-
Same(MAX_FREQ,f) is true then

f—=r+1
else

while f is in frequency range and Majority vote of 3

calls to TestSame(MAX_FREQ,f) is false do
f—f+1

return f

Algorithm 2 TestSame: used by the PTP training algorithm

Two frequencies to test: f1, f2
Collect sensor metrics at f1 for 20 seconds
Collect sensor metrics at f2 for 20 seconds
t-test each sensor metric at f1 and f2 with confidence level
of 85%
if more than 50% of sensor differ then
return false
else
return true

Each comparison (detailed in Algorithm 2) consists of (1)
running for 20 seconds at the highest frequency, (2) running
for 20 seconds at the testing frequency, and (3) a t-test
between each of the sensor metrics. Initially, the algorithm
aims at quickly reducing the frequency, if possible. The
algorithm consecutively tests the frequencies for noise in the
sensors. If two out of three tests report that the sensor metrics
have changed, the majority vote test concludes that the two
frequencies are the different; if not, it reports they result in
the same user satisfaction. PTP repeats the majority vote for
each frequency until it finds a frequency that does not pass.
Then, it starts moving up from this point until it finds the
level that passes the majority test. This frequency is called the
settled frequency. Settled frequency is used as the maximum
frequency during the execution of this application (in other
words, the operating frequency is never increased to above
the settled frequency).

It is important to note that from the user’s perspective, the
training and testing phases are not visible. The user simply
interacts with the computer as normal.

An example of the interaction between the sensor metrics
and PTP training is shown in Figure 6. The figure shows a
trace of the algorithm as it settles on a frequency (in this case,



Algorithm 3 Linux ondemand governor algorithm

for every CPU in the system do
if UP_DELAY milliseconds since last check then
if utilization > UP_THRESHOLD then
increase frequency to maximum
if DOWN_DELAY milliseconds since last check then
if utilization < DOWN_THRESHOLD then
decrease to lowest frequency that keeps the utiliza-
tion at 80%

1.6 GHz). The x-axis is time. Each step represents a 40 second
period: 20 seconds at the highest frequency, and 20 seconds
at the test frequency. The bold line with diamonds shows
the test frequency, corresponding to the right vertical axis.
The confidence levels of the t-tests for each sensor metric is
shown in each time step, with the confidence indicated by the
left vertical axis. A confidence above 85% indicates that the
sensor metric differs between the two frequencies. We begin
at 1.6 GHz. At this point, only 2 of the 6 sensors are different
so we continue down to 1.2GHz. At 1.2GHz, there is a
large change in Mean_PupilRadius. In fact, Max_MaxArrow,
Mean_PupilRadius, Mean_MaxArrow, and Max_PupilRadius
all exhibit high confidence for two tests and therefore reject
the majority vote test for 1.2 GHz. The frequency increases
to 1.6 GHz, and the sensor metrics return to values indicating
that the sensors are the same, therefore predicting the user is
satisfied. The algorithm settles at this frequency.

The PTP control algorithm is orthogonal to most other
DVES strategies. Although PTP provides a long-term predic-
tion of user satisfaction, another DVFS strategy can be used
for short-term decisions. We build PTP on top of an Adaptive
DVFS strategy that is based upon the Linux ondemand DVFS
governor [29]. This strategy is described in Algorithm 3.
In short, if utilization increases above UP_THRESHOLD,
the frequency increases to the maximum frequency. If the
utilization is below the DOWN_THRESHOLD, the algorithm
finds the frequency that maintains above 80% utilization. We
use 200 ms for both UP_DELAY and DOWN_DELAY, 80% for
UP_THRESHOLD and 30% for the DOWN_THRESHOLD.

PTP uses the minimum value of the frequency provided
by the PTP control policy and the Adaptive control policy.
Although the idea of combining the DVES schemes may seem
simple, there are benefits to such a solution. For example,
a burst of keyboard or mouse events often cause adaptive
DVEFS control schemes (e.g., Windows XP DVES [27] or the
Linux ondemand control policy [29]) to unnecessarily raise
the frequency to the maximum level. PTP prevents this by
limiting frequency at the minimum level necessary to satisfy
the user. In other words, PTP allows an adaptive DVFS
scheme to make better short-term decisions when the CPU
utilization is generally low. For applications that satisfy the
user at high utilization, PTP may set the frequency to a lower
level (if it predicts that the user is satisfied with that level),
saving a significant amount of power.

Ideally, we would like to explore the combinations of
sensor metrics for users and applications as well as search
the parameter space for the PTP thresholds, but this would
require real users in the loop and therefore be slow. A single
user study with three applications takes about an hour of
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Figure 6. Trace of sensor metrics and the frequency dur-
ing the training phase of the PTP algorithm. When sensor
readings are compared for 1.2GHz and 2.2 GHz, the
majority of the sensors result in a high t-test, indicating
that the user’s state changes. As the algorithm adjusts to
test 1.6 GHz, the physiological traits show less change.
PTP chooses 1.6 GHz for the rest of the experiment
experimental lab time, not including the time to schedule the
experiment. Therefore, trying multiple combinations quickly
becomes very time consuming. We settled on the six most
accurate individual sensor metrics listed in Table 1 and close
the loop for evaluation with user studies.

Picking one set of sensor metrics opens some questions.
Will the sensor metrics generalize across applications? Even
for a single application, how does the sensitivity depend
on users? By using the same set of sensor metrics across
all users and applications, it is very possible that we will
occasionally annoy some users. To increase the sensitivity
to our experiments, we develop two variations of PTP: an
aggressive PTP (aPTP) and a conservative PTP (cPTP).
aPTP operates exactly as the PTP algorithm described in this
section. cPTP is similar to aPTP but selects the frequency
level one step higher than aPTP.

6. Implementation and Deployment

The PTP system is implemented as a user-space program
that executes before each application run in the user studies.
Data from the biometric devices are collected on a sepa-
rate workstation and sent to the experimental laptop via a
TCP socket connection. In production systems, we envision
biometric input devices being managed by the operating
system like traditional input devices. We have designed PTP
as a proof of concept for using biometric input devices
to improve architecture-level decisions. Other approaches to
using biometric data different from ours could potentially
lead to even stronger results. Here, we are concerned with
providing the first evidence of the clear benefits of using
biometric data in architecture-level decision making.

In a real-world implementation, the power consumption
of the biometric devices would need to be outweighed by
the power savings due to the PTP. The sensors chosen for
this work all conform to this requirement. Piezoresistive
force sensors may be measured with very little additional
energy using a voltage-divider circuit and an analog-to-
digital converter, which are both common, low-power circuits.
GSR is also a simple resistive measurement, and requires
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only a voltage divider and an analog-to-digital converter.
An eye tracker requires an infrared camera, infrared LEDs,
and the capacity for image processing. Collectively, the eye
tracker sensor could operate on well below a Watt [44], [21].
Although some of these sensors may be expensive today,
the technology for producing sensors capable of operating
within desirable power constraints and at a low cost has
already been developed. Additionally, the processing needs to
interpret the sensors could also be assigned to a core of a chip
multiprocessor, reducing the additional hardware required.

7. Experimental Results

In this section, we evaluate the aPTP and cPTP systems.
We compare both PTP variants with the Adaptive scheme
described in Section 5. We use the Need for Speed (NFS),
Tetris, and Word applications and 20 users. In each run of
an application, we begin with the training phase described
in Section 5. The training phase varies based upon the
number of majority vote tests performed by the PTP strategy.
Afterwards, the user continues to use the Adaptive scheme
and the aPTP scheme for 2.5 minutes each. The order of
the aPTP and the Adaptive scheme is randomized between
experiments. The last 10 users subsequently use the cPTP
scheme for 2.5 minutes. At the end of each run, the user
is asked to verbally report satisfaction based upon the scale
described in Section 4.

During experiments, we capture traces of the frequency. A
National Instruments 6034E data acquisition card measures
the potential drop across a low-impedance resistor in series
with the laptop power cable. This allows us to measure the
system power consumption as frequency traces are replayed.
The total system power includes the power consumed by
the fully-operating laptop including the processor, a fully-lit
15.1” laptop display, network interface, and other peripherals.

The take-away points from our evaluation are:

« User satisfaction for aPTP and cPTP are nearly identical
to the underlying adaptive scheme, and

e aPTP and cPTP save 18.4% and 11.4% total system
power, respectively.

7.1. User Satisfaction and Power Savings

In Figure 7, we present the frequencies that aPTP and ¢cPTP
settle on for NFS, Tetris, and Word. The x-axis corresponds to
the users and the y-axis is the settled frequency. Each cluster
shows the settled frequency for both PTP variants and all
applications.

NFS is a CPU-intensive application for which observable
performance is sensitive to CPU frequency. aPTP picked
either 1.6 GHz or 2.2 GHz for 18 out of the 20 users. This
is drastically different from Tetris, where the observable
performance is less sensitive to CPU frequency. The average
frequency chosen by aPTP for Tetris is 1.08 GHz. Similarly,
for Word, the average frequency chosen is 1.2 GHz. This
clearly demonstrates aPTP’s ability to intelligently detect the
cases where CPU frequency can be lowered. Since for the
Tetris and Word application, the lower frequencies and higher
frequencies result in similar physiological responses, aPTP
lowers the frequency. As indicated by user satisfaction levels,
this achieves significantly higher efficiency without causing
any dissatisfaction. Note that a user-specific customization is
achieved purely based on the physiological readings from the
users, without explicit input or knowledge of program phase.

There are some cases in Tetris and Word (14 out of
40 cases altogether), where a higher frequency of 1.6 GHz
or 2.2GHz is picked by aPTP. We checked the logs of
physiological readings and found that the eye tracking data
was missing in 4 of these 14 cases. This occurs when the
user shifts in a manner such that pupil is not captured by
the eye tracker camera. This introduces significant noise to
the decision making system and results in a higher frequency
being chosen. Another 3 cases correspond to self-admittedly
inexperienced users. These users show erratic behavior. Thus,
the sensor readings are noisy and our system conservatively
sets the frequency at a high level. We must note that, although
this looks like a lost opportunity for power saving, it is an
interesting feature of the overall scheme: if for one reason
or another, the sensor readings become noisy, our system
conservatively sets the maximum allowed frequency to a
high one, thereby avoiding false negatives (i.e., cases where
the user is dissatisfied and our system predicts them to be
otherwise). For Word, we are limited to utilizing only 4
metrics, compared to the 6 used in NFS and Tetris, because
Max_MaxArrow and Mean_MaxArrow cannot be used (the
user does not press the arrow keys often). Nevertheless,
with Word, aPTP succeeds in picking low CPU frequencies
(1.2GHz and below) for 13 out of the 18 users with valid
sensor readings. Similarly, for Tetris, aPTP picks a low
frequency for 13 out of 15 users with valid sensor readings.

The reported user satisfaction ratings and power savings for
each of the applications comparing aPTP and the Adaptive
scheme are presented in Figure 8. The figure shows clustered
bars for each user. The left two bars in each cluster represent
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Figure 8. User satisfaction and power consumption for the Need for Speed, Tetris, and Word applications. The left two
bars per cluster show the user satisfaction for «PTP and the Adaptive DVFS schemes. The right bar in each cluster

shows the total system power savings.

the user satisfaction with aPTP and with the Adaptive scheme
and correspond to the leftmost vertical axis. The right bar in
each cluster represents the total power savings corresponding
to the vertical axis on the right. For our two CPU-intensive
applications, PTP saves a considerable amount of total power.
On average, for NFS (presented in Figure 8(a)), aPTP reduces
power consumption by 19.2%, and for Tetris (presented in
Figure 8(b)), aPTP reduces total power consumption by
33.3%. Word (presented in Figure 8(c)) is only CPU-intensive
in short bursts and aPTP only saves 1.7% system power. For
both Tetris and Word, aPTP also does not impact user satis-
faction. However for NFS, aPTP trades off a small amount
of user satisfaction for power savings. For this application,
aPTP is too aggressive for some users. Averaged across
three applications, aPTP saves 18.4% system power when
compared to the Adaptive scheme.

To explore a more conservative PTP scheme, we evaluate
cPTP with 10 users. Figure 9 presents the results of this
study. The graph is in the same format as Figure 8. By
using cPTP, we trade off improved user satisfaction with
power savings. cPTP tends to maintain the highest frequency
for NFS and saves 5.9% system power, while maintaining
the same satisfaction level as the Adaptive scheme. cPTP
trades off the decreased power savings with an improved
average user satisfaction rating compared to aPTP. cPTP

also maintains a high user satisfaction for Tetris, and the
power savings drop from 33.3% to 25.6%. Averaged across
three applications, cPTP saves 11.4% system power while
maintaining the user satisfaction.

Overall, our results are very encouraging: they show that
PTP can successfully sense physiological traits, predict user
satisfaction, and drive a DVFS scheme that saves considerable
power while maintaining user satisfaction.

8. Related Work

At the architecture level, there has been work that takes
user perception into account. Endo et al. [12], [11] uses
latency as a performance metric and for detecting perfor-
mance anomalies in operating systems. Vertigo [15] moni-
tors application messages to measure user-perceived latency.
Vertigo proposes a layered frequency scaling scheme similar
to PTP. Other DVFS algorithms use task information, such
as measuring response times in interactive applications or
rate of change in the display [23], [24] as a proxy for the
user. These studies rely on high-level metrics as proxies for
user satisfaction. To the best of our knowledge, this is the
first work that correlates human physiological data to user
satisfaction for making architecture-level decisions.

Dynamic voltage and frequency scaling (DVEFS) is an
effective technique for microprocessor energy and power
control for most modern processors [8], [9], [13], [14], [16],
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[43]. Energy efficiency has been a major concern for mobile
computers. Mallik et al. [25] and Shye et al. [34] show that
it is possible to utilize user feedback to control a power
management scheme. However, both schemes require explicit
user feedback that may be an inconvenience to the user.
Our work provides an implicit mechanism for inferring user
satisfaction that is orthogonal to these approaches.

The Affective Computing Group at MIT has worked to
develop emotion-aware computers [31]. They have proposed
devices such as HandWave GSR [36] with a squeezable
mouse [32]. Their most related work is concerned with
creating [33] or detecting [20] user frustration with learning
software. There is also work on relating posture to persistence
in puzzle games [4], and using face recognition software to
improve social-emotional learning for autistic children [37].
Other researchers, such as Mandryk and Atkins [26] and
Hazlett and Benedek [18], have also shown that physiological
measures (e.g., GSR, EMG sensors, and heart rate) can be
used to predict emotion when playing games. Our work
measures physiological responses in the face of changes
in computer performance and utilize real-time sensing of
physiological traits in making architectural decisions.

9. Conclusion

In this paper, we made a case for the addition of new
input devices that provide information on human state in
future computer architectures. Specifically, we explored the
use of three biometric sensors: an eye tracker to measure pupil
dilation and pupil movement, a galvanic skin response sensor
for sensing user arousal, and force sensors on the keyboard
for sensing behavioral traits. We have conducted multiple
user studies. The first showed that human physiological
readings do in fact change with changes in performance.
The second shows that biometric readings are correlated with
user satisfaction. Based upon the observations in these initial
studies, we constructed a Physiological Traits-based Power-
management (PTP) system for driving dynamic voltage and
frequency scaling on a processor. PTP was designed to
be orthogonal to most other DVFS techniques. We built
our system in combination with an adaptive DVFS scheme
based on the Linux ondemand governor. An evaluation using
an additional user study showed that an aggressive PTP
scheme reduced the total system power consumption of the
laptop by up to 33.3% for an application averaged across
users (18.1% averaged across three applications), while a

conservative PTP scheme reduced the total system power
consumption by up to 25.6% across users (11.4% averaged
across three applications). Overall, these results show that a
robust system can be built that makes decisions based upon
observing biometrics sensors. This demonstrates the potential
for incorporating biometric information into the architecture-
level decision making process.
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Appendix A

This appendix expands upon discussion in Section 4.2.
Figure 10 presents the raw data for six of the sensor metrics.
The results for each user is presented in a row in the
table of graphs and each column corresponds to a different
sensor metric (the first column presents the reported user
satisfaction level). In each of the graphs, the x-axis represents
the frequency with 1 being the highest (2.2 GHz) and 5 being
the lowest frequency (600 MHz). The y-axis represents the
user satisfaction rating for the first column and the mean
of the sensor readings for the remaining columns. The raw
data shows that the sensor metrics can be noisy. However,
in general, a change in the user satisfaction is reflected by a
change in sensor metrics. If we consider the average behavior
(presented in the last row), we see that most sensors show a
strong relation to the user satisfaction levels.
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Figure 10. Physiological traits and user satisfaction when randomly changing to multiple frequencies at different points
in Need for Speed. In each of the graphs, the x-axis represents frequency with 1 being the highest (2.2 GHz) and 5
being the slowest (600 MHz). The leftmost column shows user satisfaction and the others show data for each of 6
sensor metrics. The rows represent each user with all users averaged at the bottom.



