
 

ABSTRACT 

The efficiency of on-chip network is important for future 

many-core processors, especially with the adoption of 

nanophotonics where the power consumption is dominated by 

static power. In this work, we study a recently proposed 

nanophotonic crossbar, FlexiShare, and explore techniques to 

further improve its performance, arbitration fairness and 

channel utilization under realistic memory related traffic load. 

We look at memory controller induced hotspot traffic and the 

bimodal packet sizes. Preliminary experimental results show 

that the baseline FlexiShare is capable of handling hot-spot 

traffic, but the token stream used in its global arbitration could 

be altered to improve arbitration fairness. We also identify the 

prevalence of bimodal packet sizes in real traffic load and 

propose four different schemes to enhance FlexiShare to 

efficiently support such traffic. Our results show that by 

adopting parallel networks of different datapath widths, we can 

reduce the workload execution time by up to 69% with the same 

cross section bandwidth. The pros and cons of each of the 

candidate schemes are also discussed. 

I. INTRODUCTION 

With technology scaling, more and more cores, together with 

other processing units (e.g., memory controllers) are integrated 

into a single chip. The large number of cores in future 

chip-multiprocessor (CMP) designs call for high performance 

on-chip networks, where data is routed in packets on shared 

channels instead of dedicated buses[1].Recent advances in 

nanophotonics make it an attractive alternative to conventional 

electrical signaling with its low latency and high bandwidth 

density [2]. Recently, an efficient nanophotonic crossbar, 

FlexiShare [3], was proposed to exploit the benefits of this 

emerging technology. FlexiShare advocates global sharing of 

the optical channel resources to minimize channel 

over-provisioning and employs a distributed token stream 

arbitration scheme for its global arbitration.  

In this work, we take a closer look at FlexiShare and analyze 

its performance as well as possible architectural enhancements 

for better efficiency under two specific traffic scenarios: 

memory controller (MC) induced hot-spot traffic and bimodal 

packet-size traffic. The goal is to further improve the efficiency 

of the on-chip network under such realistic traffic load.  

Even though on-chip bandwidth is likely to scale similar to 

the increase in the number of cores on a chip, off-chip 

bandwidth might not scale at the same rate. Hence, memory 

bandwidth is likely to become an important bottleneck in future 

processor architectures. At the same time, the pin number 

constraint will probably limit the number of memory 

controllers on-chip. Thus, a small number of MCs might be 

shared among a larger number of cores – resulting in hot-spot 

traffic pattern. The achieved bandwidth at the MCs may thus 

become the bottleneck for the overall performance of the 

processor. We note that only a few studies [4] have looked into 

the impact of MCs in an on-chip network and the available 

network designs are largely ignorant of the features of MCs. 

Here, we first evaluate a variation of the token stream 

arbitration in FlexiShare to see if it can improve the overall 

performance. Then, we adopt the same technique to address the 

fairness issue in FlexiShare when multiple MCs are placed in 

the network. 

One important feature of real on-chip network traffic is that 

the packet size is bimodal, with long packets (64 or 128 bytes) 

carrying cachelines and short packets (8 to 16 bytes) containing 

control messages (e.g., memory requests, invalidations, etc.).  

Conventionally, such size difference is accounted for by 

splitting a long packet into multiple flits in an on-chip network. 

Prior works [5][2] on nanophotonic networks, including 

FlexiShare, largely assumed single-flit packets to leverage the 

high bandwidth density of nanophotonics. This incurs 

inefficiency when short packets are transmitted, especially 

considering the static power consumption of nanophotonic 

links [6]. Moreover, in the baseline FlexiShare, the token 

stream arbitration makes it difficult to hold on to a channel to 

transmit multiple flits in sequence. Additional re-order cost 

would be incurred if multiple packets (interleaved with other 

packets) are used to send a large chunk of data (e.g., a 

cacheline). In the second part of this paper, we explore different 

enhancements to the baseline FlexiShare architecture, in a bid 

to solve this problem. We describe each of the potential 

schemes, followed by discussion of their respective pros and 

cons. 

The rest of the paper is organized as follows. In Section II, 

we briefly review the FlexiShare architecture and its arbitration 

schemes. We discuss the impact of MC-induced static hot-spot 

traffic pattern in FlexiShare in Section III. In Section IV, we 

turn our attention to bi-modal packet size support in FlexiShare 

and present various potential solutions. We summarize this 

paper in Section V and project future work.  
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Figure 1.Logical architecture of FlexiShare 

II. FLEXISHARE ARCHITECTURE 

While nanophotonics enables repeater-less global 

communication and is ideal for implementing global crossbar 

network, it also incurs significant activity independent power 

consumption in laser and ring heating [6], which dominates the 

total power consumption of the links [3]. Thus, high utilization 

of nanophotonics link is needed to amortize the static power 

cost for an efficient design. However, conventional 

nanophotonic crossbar designs [5][7] dedicate channels to each 

router in the crossbar, hence requiring the number of optical 

channels to be proportional to the crossbar radix. When traffic 

is unbalanced (e.g., some nodes do not actively exchange data), 

the static power consumption in some of these dedicated 

channels are essentially wasted. To avoid such inefficiency, 

FlexiShare[3] was proposed to share a reduced number of 

optical channels across all nodes in the crossbar – hence 

detaching the channel provision from the network size and 

allowing high channel utilization to be achieved facing 

unbalanced traffic. An architectural diagram of FlexiShare is 

shown in Figure 1. Concentration is assumed as each router is 

connected to multiple nodes. To illustrate the logical 

organization of the optical data channels (CHi), we separate 

each router (Ri) into an input router (Ri
in

) or the sending router 

and an output router (Ri
out

) or the receiving router. However, 

they would be physically implemented as a single router. In 

FlexiShare, any router can send/receive on any channel and the 

number of channels (M) is independent of the crossbar radix 

(K) without sacrificing full connectivity. 

 

Figure 2.Timing diagram for a down-stream token stream 

for a radix-4 FlexiShare. 

The sharing of the channels in FlexiShare is achieved by a 

token-stream arbitration scheme – to decide which router 

should occupy a specific channel. Conventional token-ring 

arbitration schemes, such as the one found in Corona [5], issue 

a single token for each channel across all the nodes and the 

node that grabs the token occupies the whole channel. With 

token-stream arbitration, however, a stream of tokens is 

continuously injected and the injected tokens flow across all the 

nodes. Each token represents the right to occupy the channel for 

a time slot, which is of the same length in time as the token. To 

avoid starvation, the token stream passes each router twice, as 

shown on the left of Figure 2. In the first pass, the tokens are 

dedicated. For example, in Figure 2, T0 is dedicated to R0, T1 to 

R1, T2 to R2 and T3 to R0 again
1
. This essentially implements a 

static dedicated time-slot scheme, where each node can occupy 

the channel for a fraction of the time. However, if the tokens 

come back to R0 in the second pass without being grabbed, they 

are no longer dedicated and any node can grab any token in the 

second pass – implementing a daisy-chain-like priority scheme. 

Upon successfully grabbing a token, the router can then 

modulate its data onto the associated data slot (e.g., in Figure 2, 

R0 grabs token T3 and modulates its data onto data slot D3.), 

which comes several cycles after the token. Note that for 

efficiency, the token dedication information is not embedded in 

the token itself, but is maintained at each router using state 

machines. 

III. MEMORY CONTROLLERS IN FLEXISHARE 

Memory controllers in an on-chip network may incur 

hot-spot traffic pattern if they are shared among a larger 

number of cores. Hence, it is necessary to guarantee that the 

MCs are assigned a larger amount of bandwidth compared to a 

normal core. 

A. Repeated Token Scheme 

With the token-stream arbitration scheme of FlexiShare, the 

dedication of tokens represents the division of the bandwidth 

under heavy traffic load. Hence, it seems intuitive that we can 

dedicate more tokens for the MC nodes so that they get a larger 

share of the bandwidth. We devise a modified the token stream 

(repeated token scheme) such that the token for the MC nodes 

are repeated for n times while the cores’ tokens are not 

increased. For example, the downstream token streams of the 

baseline and the repeated token scheme are as shown in Figure 

3, assuming node 0 and node 8 are MCs.  

B. Experiment Setting 

To verify this hypothesis, we experiment with a 16-node 

radix-16 FlexiShare. To focus on the impact of the change in 

the global token arbitration scheme, we assume no 

concentration. Each router is connected to either one core or 

 
1  FlexiShare uses a pair of photonic links in opposite directions to 

implement a data channel. Thus, in the direction from R0 to R3, only R0, R1 
and R2 are transmitting data and hence only these 3 nodes will be competing for 

tokens on the corresponding token stream. For the opposite direction, which is 

not shown in the figure, only R3, R2 and R1 will be competing for tokens on a 
separate token stream, which runs in the direction from R3 to R0.  

0 1 2 3 4 5
Cycle

R0

R1

R2

R3

T0

T2 T4

T4

T1 T3 T4

T1 T2 T3 T4

6

T0

T3

T0

T0 T2

T2

R0

R1

R2

R3

…
..
.

Token 

Injection

D1 D2 D4D0

D2 D4D0 D3

D2 D4D0

D1 D2 D4D0 D3

T1 T2 T4T3T0

T2 T4T3T0

T1 T2 T4T3T0

T1 T2 T4T3T0

7 8

T1

T1

T3

T1

T
1

T
0

D
1

D
0

…
..
. Data 

Slots

R1D1R1

R0D1R1

D3R0

D3R0

D
0

...

...

...

...

...

...

...

...

...

...

1
st
 pass 2

nd
 pass



 

one MC. We assume 2 MC are connected in the network at 

node 0 and node 8 to create more conflicts and significant 

hot-spot traffic. We purposely choose two asymmetric 

locations for the MC nodes, for the fairness discussion in the 

coming subsections.  

A synthetic workload is created where each of the cores in 

the network has a fixed amount of requests to send. Among 

these requests, x is MC request to one of the two MC nodes and 

the remaining (1-x) observes a uniform random (UR) 

distribution among all the nodes (cores or MCs) – in an effort to 

model cache coherence traffic among the cores. When x = 0, 

the workload is UR traffic, while when x= 1.0, the workload is 

a pure hotspot traffic – i.e., all traffic are destined for two MC 

nodes. Upon receiving a request, the core or the MC will 

immediately generate a reply packet and send it back to the 

requesting node. Each core will keep sending out requests until 

its total number of outstanding requests reaches a threshold (16 

in our experiment), at which point the core is blocked from 

sending more requests. The replies have a higher priority and 

are sent ahead of its own requests. We assumed single flit 

packets for both requests and replies. 8 channels are 

provisioned for the FlexiShare. 

 
Figure 4.Normalized execution time for various numbers of 

tokens for the MC nodes (n), normalized to the baseline 

token stream with (n=1).  

C. Performance Impact of Repeated Tokens 

Figure 4 shows the normalized total execution time of the 

workloads. When n=1, it is the baseline token stream [3] found 

in FlexiShare. In general, the increased number of tokens does 

not improve the performance and even slightly hurt the 

performance when MC traffic is low (x ≤0.3). This strikes as 

surprising at first, as we intend to allocate more bandwidth to 

the MCs. However, after a careful analysis, the results turn out 

to be reasonable. First, the FlexiShare architecture inherently 

allocates more bandwidth to the more busy nodes by allowing 

any node to acquire remaining tokens on the second pass. When 

the MC nodes have high traffic (e.g., x = 1.0), all the core nodes 

are throttled by the maximum outstanding request limit and a 

new request can be sent only when the MCs finish sending a 

reply. Hence, the cores do not send as much requests any more, 

and the channels are not busy. For example, in the above 

experiment where x = 1.0, in any cycle, at most 2 requests 

(from the cores) and 2 replies (one from each MC) can be sent, 

while we have 8 channels (16 sub-channels in both directions) 

available for transmission. Thus, even with the baseline token 

stream, it is easy for the MC to capture unused tokens in the 

second pass and automatically occupy higher bandwidth. Note 

that allowing even higher number of outstanding requests will 

not improve the channel utilization as the bottleneck for 

throughput is with the MCs and not the round-trip latency of the 

request-reply pair. 

At the same time, the repeated token scheme does have some 

negative effects. By dedicating more tokens to the MC nodes, it 

forces the non-MC nodes to rely more on second pass tokens 

(as they have less share in the first pass), and hence face more 

potential contention. For a radix-k FlexiShare with m MCs, 

each having n repeated tokens, the non-MC nodes can get a first 

pass token only every (k-1+m*(n-1)) cycles, compared to the 

(k-1) cycles in the baseline scheme. When the MC traffic is 

lower, the channel utilization is higher by the UR traffic, and 

the non-MC nodes will experience more rejections in the 

repeated token scheme – hence compromising the total 

execution time, as shown in the figure when x ≤ 0.3. 

In addition, as shown in Figure 2, the delay between a first 

pass token and its associated data slot (e.g., first pass T0 is in 

cycle 0, D0 is in cycle 3, and the delay is 3 cycles) is longer than 

the delay between a second pass token and its associated data 

slot (e.g., 1 cycle between the second pass T0 and D0). Hence, 

repeating tokens for the MC essentially increases zero-load 

latency for packets sent from the MC nodes.  

D. Fairness Impact of Repeated Tokens  

While we might conclude that the baseline token stream is 

capable of handling hotspot traffic at the MCs, there is another 

problem. The two-pass token stream arbitration does not 

guarantee total fairness of the network [3]. For example, with 

the baseline token stream, node 0 is the first node on the second 

pass downstream token stream. Hence it can use up almost all 

the second pass tokens, while the other nodes (e.g., node 8) can 

only utilize its own dedicated tokens in the first pass in this 

direction. In the experiment described in Section III.A., 

assuming x=0.3
2
, we measured token request success rate of 

 
2 When the MC traffic load is dominant (x% =1), the channel utilization is 

very low. Thus, we assume lower MC traffic load here for a scenario with 
higher channel utilization.  
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Figure 3.  Baseline token stream compared with the repeated token scheme (n tokens for each MC) 
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both node 0 and node 8. For the baseline token stream, node 0 

has a success rate of 77% while node 8’s success rate is only 

30%.This results in biased performance between the two MC 

nodes and increases performance variation.  

To mitigate this problem, we can use the repeated token 

scheme to only increase the number of dedicated tokens for 

node 8. Figure 5shows the impact of the number tokens for 

node 8 (n’) on the overall token request success rate of the two 

MC nodes. Note that all the other nodes, including the MC node 

0, only have a single dedicated token. When n’=1, it is the 

baseline token scheme. It is clear that by increasing the number 

of dedicated tokens to node 8, the gap of token request success 

rate between node 0 and node 8 can be significantly reduced 

and also minimize the variation between the two nodes. 

 
Figure 5.Token-request success rate (8 channels, x= 0.3) 

For node 0, initially, the added dedicated tokens for node 8 

slightly reduces its success rate, as more tokens are used by 

node 8 in the first pass. However, when more tokens are 

dedicated to node 8, they will not be fully utilized by node 8, 

and the unused tokens will come back in the second pass and 

benefit the success rate of node 0 again. This explains why the 

success rate of node 0 finally goes up with increase repeated 

tokens for node 8 in the figure. This also shows that by varying 

the token stream, it is not straightforward to eliminate the 

success rate gap between the two nodes. There could still be a 

gap even with n’ = 17 dedicated tokens for node 8. This is 

because in this case, for a radix-k FlexiShare, the n’ repeated 

tokens only guarantees n’/(n’+k-2) of dedicated tokens for the 

node, and this is only 54.8% with n’=17, k=16. We may need a 

very large n’ to bridge the gap, unless the success rate of node 0 

is significantly hurt by the increased credits of node 8, which 

happens when the channels are more busy with traffic. For 

example, we also experimented with half the amount of 

channels (4 channels) in FlexiShare, as shown in Figure 6. In 

this case, as the amount of channels is much fewer, the success 

rate of node 0 is significantly hurt initially and it is possible for 

node 8 to over-take node 0. But when more tokens are 

dedicated to node 8, they won’t be fully utilized by node 8 and 

will end up benefiting node 0 again.  

A side effect of the added repeated tokens is that they may 

also hurt the overall performance, similar to the discussion in 

the previous subsection (Section III.C.). 

 
Figure 6.Token-request success rate (4 channels, x%=30%) 

In summary, FlexiShare by nature is capable of handling 

hot-spot traffic pattern induced by MCs and can automatically 

allocate more bandwidth to the bandwidth-demanding nodes. 

However, the fairness of the bandwidth allocation among the 

nodes needs more research. While we may put 2 MCs at 

symmetric locations on a FlexiShare network (e.g., node 0 and 

node 15), the fairness study is nevertheless important when 

more MCs are present. We demonstrated that varying the token 

stream has some impact on the fairness issue. 

IV. SUPPORTING BIMODAL PACKET SIZE 

A. Break-down of on-chip traffic by packet size  

Real on-chip network load will be bimodal in packet size. 

The cacheline transfer constitutes long packets of over 64 bytes 

long; while other request, confirmation or invalidation 

messages are likely to be much shorter in the range of 8 to 16 

bytes. To better understand the share of these two sizes of 

packets in an on-chip network, we analyze several network 

traffic traces generated using the SIMICS/GEMS simulator for 

a 64-node tiled CMP. In this simulator, the packets are 

explicitly bimodal, with short packets of 8 bytes and long 

packets of 72 bytes. Figure 7 shows the breakdown of number 

of packets in 9 SPLASH-2 and NU-MineBench benchmarks.  

 
Figure 7.Breakdown of total number of packets 

It can be seen that the number of short packets consistently 

constitute over 70% of the total number of packets. However, if 

we look at the bandwidth demand (or the total amount of data) 

break-down, the situation is the opposite – the long packets 

dominate, constituting mostly over 70% of the total data sent, 

as shown in Figure 8. 
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Figure 8.Breakdown of total amount of data 

B. Bimodal packets in On-Chip Network 

Conventionally, the different packet size in on-chip networks 

is accounted for by separating the long packets into multiple 

flits. However, if we choose a flit size the same as the long 

packets, we eliminate serialization latency [8] by having 

single-flit packets, but at the same time, a large portion of the 

channels will be wasted when sending short packets – resulting 

in poor channel bandwidth efficiency, especially when the 

number of short packets dominates. On the other hand, if we 

choose a flit size equal to the short packets, the long packets 

will experience long serialization latency (e.g., 8 cycles in our 

example) and as the amount of data in the long packets 

dominates, most of the traffic on the network is serialized.  

The XShare [9] architecture aims to alleviate this problem by 

trying to combine two short packets to send on a wide data path 

in an electrical network. However, prior works [5][2] on 

nanophotonic on-chip networks, including FleixShare, have 

largely assumed single-flit packets with large flit size. This 

leverages the high bandwidth density provided by 

nanophotonics, but it also ignores the different packet sizes in 

on-chip network traffic and can result in inefficiency, 

especially considering that each nanophotonic channel 

consumes significant amount of static power in laser and ring 

heating [6]. Shacham et al.[10], took another approach to this 

problem and devised a circuit-switched nanophotonic network 

only for long packets (memory pages, cachelines, etc.) while 

sending the short packets in a parallel electrical network. 

However, in this case, the short packets will not be able to 

leverage the low latency of nanophotonics, resulting in long 

round-trip time for each request/reply pair. 

C. Enhancing FlexiShare for Bimodal Packet Sizes  

The FlexiShare architecture also assumed single-flit packets. 

However, different from previously proposed nanophotonic 

on-chip networks (e.g., Corona [5]) which can hold on to a 

channel and support multi-flit packets, the baseline 

token-stream arbitration scheme in FlexiShare makes it 

impossible to send multiple-flit packets in sequence. While it is 

possible to split the large chunk of data into multiple short 

packets and send them interleaved, the re-assembly and 

reordering needed at the receiver side will be costly, especially 

considering that most of the packets might need re-assembly 

based on results shown in Figure 8. Thus, here we explore 

several possible enhancements to the FlexiShare architecture or 

its token-stream arbitration scheme to support bimodal packet 

sizes. 

1) Parallel Networks 

Balfour et al [11] proposed using two parallel networks of 

the same datapath width to improve channel utilization in an 

electrical concentrated mesh network. With the high bandwidth 

density in nanophotonics, we can extend this idea and devise 

two parallel FlexiShare networks, each with a datapath width 

matching the short or long packet size. Thus, all the packets in 

each network are still 1-flit long and no serialization latency is 

incurred for long packets. Whenever a router sends a packet, it 

will pick a network suitable for its packet size.  Because 

FlexiShare can be provisioned with any number of channels 

[3], we can separately provision each of the parallel networks 

according to the average traffic load of that packet size. This 

works if the traffic load of each packet size is relatively stable 

over time. If the traffic load of each type alternates across time 

(e.g., with a phase full of short packets followed by a phase full 

of long packets), part of the channel resources will still be 

wasted – as this is a partially fixed channel dedication scheme 

and does not fully share the channel resources across all traffic 

types. However, depending on the length of the phases, 

adaptive schemes may be devised to turn on/off some of the 

channels in either network if its utilization is high/low for 

extended period of time – exploiting the fact that channel 

provision is independent from connectivity in FlexiShare. 

We experiment with a 64-node, radix-16 FlexiShare network 

with the request/reply type of workload described in Section 

III.A., assuming x = 0 and no MC node (i.e., a uniform random 

traffic without hot-spot). To show the impact of packet size 

variation, we make some of the packets 8 times as long as the 

others – forming a traffic load where part of the packets (s) are 

short packets of 8-byte and the remaining packets (1-s) are long 

packets of 64-byte. We provision the networks with a total of 

512-byte cross-section bandwidth. This bandwidth is split, in 

different ratios, into a wide FlexiShare of 64-byte data path and 

a narrow FlexiShare of 8-byte data path. The total execution 

time of the workload is shown in Figure 9. In the figure, the 

legend Wa_Nb (t) represents a network with a channels for the 

wide network, b channels for the narrow network and the total 

cross-section bandwidth is t bytes. Obviously, t = a*64 + b*8. 

The baseline is a single FlexiShare network with only wide 

channels, i.e., W8_N0(512), and the total execution time of 

other schemes are normalized to that of the baseline. The x-axis 

shows different percentage of the number of short packets (s). 

Comparing all the schemes with 512-byte cross-section 

bandwidth, it is obvious that dedicating some of the bandwidth 

to the narrow network can significantly increase the number of 

channels for short packets – resulting in higher overall 

throughput. This is illustrated by the consistent higher 

performance of W7_N8, W5_N24 and W4_N32 over the 

baseline W8_N0. When the percentage of number of short 

packets increases, intuitively it becomes favorable to provision 

more bandwidth to the narrow network.  

With a fixed percentage of short packets, there is a 

sweet-point for the split-up of bandwidth between the two 

networks. For example, when s = 0.5 and 0.55, W7_N8 
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performs best, reducing the total execution time by over 40%; 

while for s = 0.6 ~ 0.85, W5_N24 takes over as the most 

efficient, with a reduction in execution time as much as 69%.  

Another point to be noted here is that excessive short 

channels are not necessary. For example, comparing W4_N32 

and W4_N16, they performed similarly with s of up to 0.75, 

which means by employing two parallel networks, we can 

reduce the amount of channel provisioning by 25% without 

losing performance in these cases.  

 
Figure 10. Token Linkup within a single stream 

2) Distributed link-up of Tokens& Data slots. 

Another natural extension of FlexiShare to support bimodal 

packet size is to use consecutive tokens / data slots for long 

packets so that we avoid the reassembly and re-ordering cost 

incurred by sending separate packets for a chunk of data. 

Similar to the baseline FlexiShare, this can be done in a 

distributed fashion. Instead of having the dedication of the 

tokens rotated every cycle, we can have consecutive tokens 

dedicated to a same router. For example, assuming the long 

packets are 2 flits long, for a radix-4 FlexiShare, in the 

downstream direction, we can have a token stream of T0, T0’, 

T1, T1’,T2,T2’…, as shown in Figure 10. Here, token Tx and 

Tx’ are both dedicated to router Rx.  

To send single-flit packets, the routers will behave exactly 

the same as the baseline FlexiShare, trying to grab dedicated 

tokens (both Tx and Tx’ for Rx) in the first pass, or any 

available token in the second pass. 

Suppose R0 is to send a long (2-flit) packet, it can grab token 

T0 in the first pass in cycle 0 and it knows for sure the next 

cycle it has token T0’ dedicated to it and it can send the two flits 

in sequence on data slots D0 and D0’ – essentially linking up 

the two tokens and data slots. However, if a long packet arrives 

at R0 before cycle 1, it cannot grab T0’ in the first pass in cycle 

1 as T1 in the next cycle is dedicated to R1. In the second pass, 

tokens can also be linked up. For example, if a long packet 

arrives at R1 before cycle 5, it can grab T1’ in the second pass in 

cycle 5. However, there is no guarantee if R1 can get T2 in the 

next cycle. If the upstream R0 grabbed T2, R1 will fail in getting 

T2 and the granted T1’ can no longer be used for the long 

packet. It can either be used for sending a short packet, if 

available, or it will be wasted. The link-up of the tokens and 

data slots can be easily indicated by a single bit in the head flit 

for the receiver to properly process the arriving flits.  

The advantage of this scheme is multifold. First, we maintain 

the distributed arbitration and each router only relies on the 

token stream for global information. Second, there is no 

requirement for the number of channels to be provisioned. Even 

with a single channel, we can support the bimodal packet sizes 

and share all the channel resources across the network, without 

assumption for the nature of the traffic load. Third, the router 

design only needs slight modification from the baseline 

FlexiShare and the added complexity is moderate.  

However, this scheme also has some problems. First, it faces 

fragmentation as in the second pass, there is no guarantee that 

two consecutive tokens can be linked up. In the worst case half 

of the bandwidth can be wasted (if alternative tokens are 

grabbed for short packets) while blocking the transmission of 

long packets. Second, the fragmentation problem aggravates 

with increased packet size – as the probability to successfully 

grab enough consecutive tokens on the second pass diminishes 

with increased number of tokens needed. Thus, this scheme 

might only work efficiently for long packets of no more than 2 

flits. However, considering the large difference in size between 

large and short packets (8-byte vs. 64-byte), this is sub-optimal 

and will still waste part of the channel resource when sending 

short packets. Third, as the token grabbing for long packets on 

the second pass is speculative, it may result in the waste of 

tokens at upstream nodes while blocking even short packet 

traffic at downstream nodes.  

3) Centralized link-up of Tokens and Data slots  

To avoid the above mentioned fragmentation problem, 

another option is to have a centralized arbiter for sending long 

packets. When a node has short packets to send, it simply uses 

the baseline two-pass token arbitration scheme of FlexiShare. 
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Figure 9.Normalized execution time for various channel provisioning in parallel networks. 
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However, if a long packet comes, it will first send a request, as a 

short packet, to a centralized arbiter, which makes an 

arrangement for the long packet on a certain channel for several 

slots in the future.  Then the arbiter will send a short reply 

packet to the requesting node, informing it the channel and data 

slots allocated to it.  The arbiter will also remove the 

corresponding tokens for those data slots from the token stream 

so that no other nodes can grab the tokens and occupy any of 

the granted data slots.  

The advantage of this scheme is that we can have much 

narrower data path for short flits and more flits for long packets 

and we do not have to worry about fragmentation. However, 

there are also problems with this scheme. First, the 

communication with the centralized arbiter incurs extra 

zero-load latency. And such latency has to be carefully hidden 

within the router so as to avoid compromising throughput – 

resulting in significant router complexity. Second, for each 

long packet sent, 2 short packets are needed as overhead. Third, 

if narrow flit width is adopted and the long packets have many 

flits, serialization latency will be significant. Last, but not the 

least, the complexity of the centralized arbiter is high and it is 

not scalable with increased network size.  

4) Channel Link-up 

A complementary scheme to token link-up is channel 

link-up. With multiple channels present in the FlexiShare 

network, it is possible to linkup multiple channels to send a 

long packet in parallel. For example, Figure 11 shows the token 

streams of two channels at router R0. Here, Tx is dedicated to 

Rx in the first pass. We assume long packets are 2 flits long.  In 

the first pass, if R0 has a long flit to send before cycle 0, it is 

guaranteed to get both T0’s on the two channels and can send 

the two flits in parallel in cycle 3 on slot D0’s. If a long packet 

arrives at R0 before cycle 4, however, it cannot grab the T1’s as 

they are dedicated to R1, but it can try to grab the second pass 

tokens T2 from the two channels. Similar to the token link-up 

scheme discussed previously, this scheme suffers from 

fragmentation and token wasting problems and it is also not 

easy to support many-flit packets. Compared to token link-up, 

this scheme might incur lower zero load latency as the long 

packets are sent in parallel. However, it also requires multiple 

channels to be provisioned.  

 
Figure 11. Channel Link-up scheme at Router R0. 

V. SUMMARY AND FUTURE WORK 

In this work, we focused on two aspects of on-chip network 

traffic : memory controller induced hotspot traffic pattern and 

bimodal packet sizes. With a small number of memory 

controllers shared among the cores, hot-spot traffic pattern can 

be formed. We found the baseline FlexiShare is capable of 

handling such hot-spot traffic thanks to its two-pass token 

stream arbitration. However, the baseline token stream needs to 

be altered to improve the fairness of the network.  

To achieve better network efficiency, the bimodal packet 

distribution of on-chip network traffic needs to be exploited.  

We described four different schemes to enhance FlexiShare to 

support bimodal packet sizes. The link-up of tokens or channels 

fully shares the channel resources, but may not be efficient for 

very large multi-flit packet. Parallel networks of different 

datapath widths can be efficiently implemented and separately 

provisioned for high utilization rate. However, this requires a 

relatively stable mixture of the two types of packet lengths and 

may be inefficient if phases of a single type of traffic exist. 

In the future, we plan to explore different token streams in 

FlexiShare to address the fairness issue and possibly employ 

adaptive schemes to enforce strict fairness. We will also further 

improve and evaluate the token/channel link-up schemes and 

try to minimize the fragmentation and token wasting problems 

under bimodal packet sizes. Extensive examination of more 

realistic on-chip network traffic will help understand which 

scheme is most efficient in a nanophotonic on-chip network.  
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