

ABSTRACT

The efficiency of on-chip network is important for future

many-core processors, especially with the adoption of

nanophotonics where the power consumption is dominated by

static power. In this work, we study a recently proposed

nanophotonic crossbar, FlexiShare, and explore techniques to

further improve its performance, arbitration fairness and

channel utilization under realistic memory related traffic load.

We look at memory controller induced hotspot traffic and the

bimodal packet sizes. Preliminary experimental results show

that the baseline FlexiShare is capable of handling hot-spot

traffic, but the token stream used in its global arbitration could

be altered to improve arbitration fairness. We also identify the

prevalence of bimodal packet sizes in real traffic load and

propose four different schemes to enhance FlexiShare to

efficiently support such traffic. Our results show that by

adopting parallel networks of different datapath widths, we can

reduce the workload execution time by up to 69% with the same

cross section bandwidth. The pros and cons of each of the

candidate schemes are also discussed.

I. INTRODUCTION

With technology scaling, more and more cores, together with

other processing units (e.g., memory controllers) are integrated

into a single chip. The large number of cores in future

chip-multiprocessor (CMP) designs call for high performance

on-chip networks, where data is routed in packets on shared

channels instead of dedicated buses[1].Recent advances in

nanophotonics make it an attractive alternative to conventional

electrical signaling with its low latency and high bandwidth

density [2]. Recently, an efficient nanophotonic crossbar,

FlexiShare [3], was proposed to exploit the benefits of this

emerging technology. FlexiShare advocates global sharing of

the optical channel resources to minimize channel

over-provisioning and employs a distributed token stream

arbitration scheme for its global arbitration.

In this work, we take a closer look at FlexiShare and analyze

its performance as well as possible architectural enhancements

for better efficiency under two specific traffic scenarios:

memory controller (MC) induced hot-spot traffic and bimodal

packet-size traffic. The goal is to further improve the efficiency

of the on-chip network under such realistic traffic load.

Even though on-chip bandwidth is likely to scale similar to

the increase in the number of cores on a chip, off-chip

bandwidth might not scale at the same rate. Hence, memory

bandwidth is likely to become an important bottleneck in future

processor architectures. At the same time, the pin number

constraint will probably limit the number of memory

controllers on-chip. Thus, a small number of MCs might be

shared among a larger number of cores – resulting in hot-spot

traffic pattern. The achieved bandwidth at the MCs may thus

become the bottleneck for the overall performance of the

processor. We note that only a few studies [4] have looked into

the impact of MCs in an on-chip network and the available

network designs are largely ignorant of the features of MCs.

Here, we first evaluate a variation of the token stream

arbitration in FlexiShare to see if it can improve the overall

performance. Then, we adopt the same technique to address the

fairness issue in FlexiShare when multiple MCs are placed in

the network.

One important feature of real on-chip network traffic is that

the packet size is bimodal, with long packets (64 or 128 bytes)

carrying cachelines and short packets (8 to 16 bytes) containing

control messages (e.g., memory requests, invalidations, etc.).

Conventionally, such size difference is accounted for by

splitting a long packet into multiple flits in an on-chip network.

Prior works [5][2] on nanophotonic networks, including

FlexiShare, largely assumed single-flit packets to leverage the

high bandwidth density of nanophotonics. This incurs

inefficiency when short packets are transmitted, especially

considering the static power consumption of nanophotonic

links [6]. Moreover, in the baseline FlexiShare, the token

stream arbitration makes it difficult to hold on to a channel to

transmit multiple flits in sequence. Additional re-order cost

would be incurred if multiple packets (interleaved with other

packets) are used to send a large chunk of data (e.g., a

cacheline). In the second part of this paper, we explore different

enhancements to the baseline FlexiShare architecture, in a bid

to solve this problem. We describe each of the potential

schemes, followed by discussion of their respective pros and

cons.

The rest of the paper is organized as follows. In Section II,

we briefly review the FlexiShare architecture and its arbitration

schemes. We discuss the impact of MC-induced static hot-spot

traffic pattern in FlexiShare in Section III. In Section IV, we

turn our attention to bi-modal packet size support in FlexiShare

and present various potential solutions. We summarize this

paper in Section V and project future work.

Tuning Nanophotonic On-Chip Network

Designs for Improving Memory Traffic

Northwestern University

2145 Sheridan Road, Evanston, IL

†
KAIST

Daejeon, Korea

Yan Pan, John Kim
†
, Gokhan Memik

CH0

CH1

CHM-1

…...

R0

R1

RK-1

R0

R1

RK-1

...
...

...

..
.

..
.

..
.

out

out

out

in

in

in

Figure 1.Logical architecture of FlexiShare

II. FLEXISHARE ARCHITECTURE

While nanophotonics enables repeater-less global

communication and is ideal for implementing global crossbar

network, it also incurs significant activity independent power

consumption in laser and ring heating [6], which dominates the

total power consumption of the links [3]. Thus, high utilization

of nanophotonics link is needed to amortize the static power

cost for an efficient design. However, conventional

nanophotonic crossbar designs [5][7] dedicate channels to each

router in the crossbar, hence requiring the number of optical

channels to be proportional to the crossbar radix. When traffic

is unbalanced (e.g., some nodes do not actively exchange data),

the static power consumption in some of these dedicated

channels are essentially wasted. To avoid such inefficiency,

FlexiShare[3] was proposed to share a reduced number of

optical channels across all nodes in the crossbar – hence

detaching the channel provision from the network size and

allowing high channel utilization to be achieved facing

unbalanced traffic. An architectural diagram of FlexiShare is

shown in Figure 1. Concentration is assumed as each router is

connected to multiple nodes. To illustrate the logical

organization of the optical data channels (CHi), we separate

each router (Ri) into an input router (Ri
in

) or the sending router

and an output router (Ri
out

) or the receiving router. However,

they would be physically implemented as a single router. In

FlexiShare, any router can send/receive on any channel and the

number of channels (M) is independent of the crossbar radix

(K) without sacrificing full connectivity.

Figure 2.Timing diagram for a down-stream token stream

for a radix-4 FlexiShare.

The sharing of the channels in FlexiShare is achieved by a

token-stream arbitration scheme – to decide which router

should occupy a specific channel. Conventional token-ring

arbitration schemes, such as the one found in Corona [5], issue

a single token for each channel across all the nodes and the

node that grabs the token occupies the whole channel. With

token-stream arbitration, however, a stream of tokens is

continuously injected and the injected tokens flow across all the

nodes. Each token represents the right to occupy the channel for

a time slot, which is of the same length in time as the token. To

avoid starvation, the token stream passes each router twice, as

shown on the left of Figure 2. In the first pass, the tokens are

dedicated. For example, in Figure 2, T0 is dedicated to R0, T1 to

R1, T2 to R2 and T3 to R0 again
1
. This essentially implements a

static dedicated time-slot scheme, where each node can occupy

the channel for a fraction of the time. However, if the tokens

come back to R0 in the second pass without being grabbed, they

are no longer dedicated and any node can grab any token in the

second pass – implementing a daisy-chain-like priority scheme.

Upon successfully grabbing a token, the router can then

modulate its data onto the associated data slot (e.g., in Figure 2,

R0 grabs token T3 and modulates its data onto data slot D3.),

which comes several cycles after the token. Note that for

efficiency, the token dedication information is not embedded in

the token itself, but is maintained at each router using state

machines.

III. MEMORY CONTROLLERS IN FLEXISHARE

Memory controllers in an on-chip network may incur

hot-spot traffic pattern if they are shared among a larger

number of cores. Hence, it is necessary to guarantee that the

MCs are assigned a larger amount of bandwidth compared to a

normal core.

A. Repeated Token Scheme

With the token-stream arbitration scheme of FlexiShare, the

dedication of tokens represents the division of the bandwidth

under heavy traffic load. Hence, it seems intuitive that we can

dedicate more tokens for the MC nodes so that they get a larger

share of the bandwidth. We devise a modified the token stream

(repeated token scheme) such that the token for the MC nodes

are repeated for n times while the cores’ tokens are not

increased. For example, the downstream token streams of the

baseline and the repeated token scheme are as shown in Figure

3, assuming node 0 and node 8 are MCs.

B. Experiment Setting

To verify this hypothesis, we experiment with a 16-node

radix-16 FlexiShare. To focus on the impact of the change in

the global token arbitration scheme, we assume no

concentration. Each router is connected to either one core or

1 FlexiShare uses a pair of photonic links in opposite directions to

implement a data channel. Thus, in the direction from R0 to R3, only R0, R1
and R2 are transmitting data and hence only these 3 nodes will be competing for

tokens on the corresponding token stream. For the opposite direction, which is

not shown in the figure, only R3, R2 and R1 will be competing for tokens on a
separate token stream, which runs in the direction from R3 to R0.

0 1 2 3 4 5
Cycle

R0

R1

R2

R3

T0

T2 T4

T4

T1 T3 T4

T1 T2 T3 T4

6

T0

T3

T0

T0 T2

T2

R0

R1

R2

R3

…
..
.

Token

Injection

D1 D2 D4D0

D2 D4D0 D3

D2 D4D0

D1 D2 D4D0 D3

T1 T2 T4T3T0

T2 T4T3T0

T1 T2 T4T3T0

T1 T2 T4T3T0

7 8

T1

T1

T3

T1

T
1

T
0

D
1

D
0

…
..
. Data

Slots

R1D1R1

R0D1R1

D3R0

D3R0

D
0

...

...

...

...

...

...

...

...

...

...

1
st
 pass 2

nd
 pass

one MC. We assume 2 MC are connected in the network at

node 0 and node 8 to create more conflicts and significant

hot-spot traffic. We purposely choose two asymmetric

locations for the MC nodes, for the fairness discussion in the

coming subsections.

A synthetic workload is created where each of the cores in

the network has a fixed amount of requests to send. Among

these requests, x is MC request to one of the two MC nodes and

the remaining (1-x) observes a uniform random (UR)

distribution among all the nodes (cores or MCs) – in an effort to

model cache coherence traffic among the cores. When x = 0,

the workload is UR traffic, while when x= 1.0, the workload is

a pure hotspot traffic – i.e., all traffic are destined for two MC

nodes. Upon receiving a request, the core or the MC will

immediately generate a reply packet and send it back to the

requesting node. Each core will keep sending out requests until

its total number of outstanding requests reaches a threshold (16

in our experiment), at which point the core is blocked from

sending more requests. The replies have a higher priority and

are sent ahead of its own requests. We assumed single flit

packets for both requests and replies. 8 channels are

provisioned for the FlexiShare.

Figure 4.Normalized execution time for various numbers of

tokens for the MC nodes (n), normalized to the baseline

token stream with (n=1).

C. Performance Impact of Repeated Tokens

Figure 4 shows the normalized total execution time of the

workloads. When n=1, it is the baseline token stream [3] found

in FlexiShare. In general, the increased number of tokens does

not improve the performance and even slightly hurt the

performance when MC traffic is low (x ≤0.3). This strikes as

surprising at first, as we intend to allocate more bandwidth to

the MCs. However, after a careful analysis, the results turn out

to be reasonable. First, the FlexiShare architecture inherently

allocates more bandwidth to the more busy nodes by allowing

any node to acquire remaining tokens on the second pass. When

the MC nodes have high traffic (e.g., x = 1.0), all the core nodes

are throttled by the maximum outstanding request limit and a

new request can be sent only when the MCs finish sending a

reply. Hence, the cores do not send as much requests any more,

and the channels are not busy. For example, in the above

experiment where x = 1.0, in any cycle, at most 2 requests

(from the cores) and 2 replies (one from each MC) can be sent,

while we have 8 channels (16 sub-channels in both directions)

available for transmission. Thus, even with the baseline token

stream, it is easy for the MC to capture unused tokens in the

second pass and automatically occupy higher bandwidth. Note

that allowing even higher number of outstanding requests will

not improve the channel utilization as the bottleneck for

throughput is with the MCs and not the round-trip latency of the

request-reply pair.

At the same time, the repeated token scheme does have some

negative effects. By dedicating more tokens to the MC nodes, it

forces the non-MC nodes to rely more on second pass tokens

(as they have less share in the first pass), and hence face more

potential contention. For a radix-k FlexiShare with m MCs,

each having n repeated tokens, the non-MC nodes can get a first

pass token only every (k-1+m*(n-1)) cycles, compared to the

(k-1) cycles in the baseline scheme. When the MC traffic is

lower, the channel utilization is higher by the UR traffic, and

the non-MC nodes will experience more rejections in the

repeated token scheme – hence compromising the total

execution time, as shown in the figure when x ≤ 0.3.

In addition, as shown in Figure 2, the delay between a first

pass token and its associated data slot (e.g., first pass T0 is in

cycle 0, D0 is in cycle 3, and the delay is 3 cycles) is longer than

the delay between a second pass token and its associated data

slot (e.g., 1 cycle between the second pass T0 and D0). Hence,

repeating tokens for the MC essentially increases zero-load

latency for packets sent from the MC nodes.

D. Fairness Impact of Repeated Tokens

While we might conclude that the baseline token stream is

capable of handling hotspot traffic at the MCs, there is another

problem. The two-pass token stream arbitration does not

guarantee total fairness of the network [3]. For example, with

the baseline token stream, node 0 is the first node on the second

pass downstream token stream. Hence it can use up almost all

the second pass tokens, while the other nodes (e.g., node 8) can

only utilize its own dedicated tokens in the first pass in this

direction. In the experiment described in Section III.A.,

assuming x=0.3
2
, we measured token request success rate of

2 When the MC traffic load is dominant (x% =1), the channel utilization is

very low. Thus, we assume lower MC traffic load here for a scenario with
higher channel utilization.

80%

85%

90%

95%

100%

105%

110%

0.1 0.3 0.7 1

N
o

rm
a

li
ze

d
 E

xe
cu

ti
o

n
 T

im
e

Percent of MC traffic (x)

n=1

n=2

n=3

n=4

n=5

n=6

n=9

Figure 3. Baseline token stream compared with the repeated token scheme (n tokens for each MC)

R0 R1 R2 ... R14

R0 R1 R2 ...R0 R0... R7 R8 R8 R8... R9 ... R14

n repeated tokens for R0 (MC) n repeated tokens for R8 (MC)

Baseline downstream token stream

Repeated token scheme

...

...

both node 0 and node 8. For the baseline token stream, node 0

has a success rate of 77% while node 8’s success rate is only

30%.This results in biased performance between the two MC

nodes and increases performance variation.

To mitigate this problem, we can use the repeated token

scheme to only increase the number of dedicated tokens for

node 8. Figure 5shows the impact of the number tokens for

node 8 (n’) on the overall token request success rate of the two

MC nodes. Note that all the other nodes, including the MC node

0, only have a single dedicated token. When n’=1, it is the

baseline token scheme. It is clear that by increasing the number

of dedicated tokens to node 8, the gap of token request success

rate between node 0 and node 8 can be significantly reduced

and also minimize the variation between the two nodes.

Figure 5.Token-request success rate (8 channels, x= 0.3)

For node 0, initially, the added dedicated tokens for node 8

slightly reduces its success rate, as more tokens are used by

node 8 in the first pass. However, when more tokens are

dedicated to node 8, they will not be fully utilized by node 8,

and the unused tokens will come back in the second pass and

benefit the success rate of node 0 again. This explains why the

success rate of node 0 finally goes up with increase repeated

tokens for node 8 in the figure. This also shows that by varying

the token stream, it is not straightforward to eliminate the

success rate gap between the two nodes. There could still be a

gap even with n’ = 17 dedicated tokens for node 8. This is

because in this case, for a radix-k FlexiShare, the n’ repeated

tokens only guarantees n’/(n’+k-2) of dedicated tokens for the

node, and this is only 54.8% with n’=17, k=16. We may need a

very large n’ to bridge the gap, unless the success rate of node 0

is significantly hurt by the increased credits of node 8, which

happens when the channels are more busy with traffic. For

example, we also experimented with half the amount of

channels (4 channels) in FlexiShare, as shown in Figure 6. In

this case, as the amount of channels is much fewer, the success

rate of node 0 is significantly hurt initially and it is possible for

node 8 to over-take node 0. But when more tokens are

dedicated to node 8, they won’t be fully utilized by node 8 and

will end up benefiting node 0 again.

A side effect of the added repeated tokens is that they may

also hurt the overall performance, similar to the discussion in

the previous subsection (Section III.C.).

Figure 6.Token-request success rate (4 channels, x%=30%)

In summary, FlexiShare by nature is capable of handling

hot-spot traffic pattern induced by MCs and can automatically

allocate more bandwidth to the bandwidth-demanding nodes.

However, the fairness of the bandwidth allocation among the

nodes needs more research. While we may put 2 MCs at

symmetric locations on a FlexiShare network (e.g., node 0 and

node 15), the fairness study is nevertheless important when

more MCs are present. We demonstrated that varying the token

stream has some impact on the fairness issue.

IV. SUPPORTING BIMODAL PACKET SIZE

A. Break-down of on-chip traffic by packet size

Real on-chip network load will be bimodal in packet size.

The cacheline transfer constitutes long packets of over 64 bytes

long; while other request, confirmation or invalidation

messages are likely to be much shorter in the range of 8 to 16

bytes. To better understand the share of these two sizes of

packets in an on-chip network, we analyze several network

traffic traces generated using the SIMICS/GEMS simulator for

a 64-node tiled CMP. In this simulator, the packets are

explicitly bimodal, with short packets of 8 bytes and long

packets of 72 bytes. Figure 7 shows the breakdown of number

of packets in 9 SPLASH-2 and NU-MineBench benchmarks.

Figure 7.Breakdown of total number of packets

It can be seen that the number of short packets consistently

constitute over 70% of the total number of packets. However, if

we look at the bandwidth demand (or the total amount of data)

break-down, the situation is the opposite – the long packets

dominate, constituting mostly over 70% of the total data sent,

as shown in Figure 8.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 5 9 13 17

To
ke

n
 R

e
q

u
e

st
 S

u
cc

e
ss

 R
at

e

Number of tokens for Node 8 (n')

Node 0

Node 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 5 9 13 17

To
ke

n
 R

e
q

u
e

st
 S

u
cc

e
ss

 R
at

e

Number of tokens for Node 8 (n')

Node 0

Node 8

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

B
re

ak
-d

o
w

n
 o

f
n

u
m

b
e

r
o

f
p

ac
ke

ts
 b

yp
ac

ke
t

si
ze

Long (72-byte)

Short (8-byte)

Figure 8.Breakdown of total amount of data

B. Bimodal packets in On-Chip Network

Conventionally, the different packet size in on-chip networks

is accounted for by separating the long packets into multiple

flits. However, if we choose a flit size the same as the long

packets, we eliminate serialization latency [8] by having

single-flit packets, but at the same time, a large portion of the

channels will be wasted when sending short packets – resulting

in poor channel bandwidth efficiency, especially when the

number of short packets dominates. On the other hand, if we

choose a flit size equal to the short packets, the long packets

will experience long serialization latency (e.g., 8 cycles in our

example) and as the amount of data in the long packets

dominates, most of the traffic on the network is serialized.

The XShare [9] architecture aims to alleviate this problem by

trying to combine two short packets to send on a wide data path

in an electrical network. However, prior works [5][2] on

nanophotonic on-chip networks, including FleixShare, have

largely assumed single-flit packets with large flit size. This

leverages the high bandwidth density provided by

nanophotonics, but it also ignores the different packet sizes in

on-chip network traffic and can result in inefficiency,

especially considering that each nanophotonic channel

consumes significant amount of static power in laser and ring

heating [6]. Shacham et al.[10], took another approach to this

problem and devised a circuit-switched nanophotonic network

only for long packets (memory pages, cachelines, etc.) while

sending the short packets in a parallel electrical network.

However, in this case, the short packets will not be able to

leverage the low latency of nanophotonics, resulting in long

round-trip time for each request/reply pair.

C. Enhancing FlexiShare for Bimodal Packet Sizes

The FlexiShare architecture also assumed single-flit packets.

However, different from previously proposed nanophotonic

on-chip networks (e.g., Corona [5]) which can hold on to a

channel and support multi-flit packets, the baseline

token-stream arbitration scheme in FlexiShare makes it

impossible to send multiple-flit packets in sequence. While it is

possible to split the large chunk of data into multiple short

packets and send them interleaved, the re-assembly and

reordering needed at the receiver side will be costly, especially

considering that most of the packets might need re-assembly

based on results shown in Figure 8. Thus, here we explore

several possible enhancements to the FlexiShare architecture or

its token-stream arbitration scheme to support bimodal packet

sizes.

1) Parallel Networks

Balfour et al [11] proposed using two parallel networks of

the same datapath width to improve channel utilization in an

electrical concentrated mesh network. With the high bandwidth

density in nanophotonics, we can extend this idea and devise

two parallel FlexiShare networks, each with a datapath width

matching the short or long packet size. Thus, all the packets in

each network are still 1-flit long and no serialization latency is

incurred for long packets. Whenever a router sends a packet, it

will pick a network suitable for its packet size. Because

FlexiShare can be provisioned with any number of channels

[3], we can separately provision each of the parallel networks

according to the average traffic load of that packet size. This

works if the traffic load of each packet size is relatively stable

over time. If the traffic load of each type alternates across time

(e.g., with a phase full of short packets followed by a phase full

of long packets), part of the channel resources will still be

wasted – as this is a partially fixed channel dedication scheme

and does not fully share the channel resources across all traffic

types. However, depending on the length of the phases,

adaptive schemes may be devised to turn on/off some of the

channels in either network if its utilization is high/low for

extended period of time – exploiting the fact that channel

provision is independent from connectivity in FlexiShare.

We experiment with a 64-node, radix-16 FlexiShare network

with the request/reply type of workload described in Section

III.A., assuming x = 0 and no MC node (i.e., a uniform random

traffic without hot-spot). To show the impact of packet size

variation, we make some of the packets 8 times as long as the

others – forming a traffic load where part of the packets (s) are

short packets of 8-byte and the remaining packets (1-s) are long

packets of 64-byte. We provision the networks with a total of

512-byte cross-section bandwidth. This bandwidth is split, in

different ratios, into a wide FlexiShare of 64-byte data path and

a narrow FlexiShare of 8-byte data path. The total execution

time of the workload is shown in Figure 9. In the figure, the

legend Wa_Nb (t) represents a network with a channels for the

wide network, b channels for the narrow network and the total

cross-section bandwidth is t bytes. Obviously, t = a*64 + b*8.

The baseline is a single FlexiShare network with only wide

channels, i.e., W8_N0(512), and the total execution time of

other schemes are normalized to that of the baseline. The x-axis

shows different percentage of the number of short packets (s).

Comparing all the schemes with 512-byte cross-section

bandwidth, it is obvious that dedicating some of the bandwidth

to the narrow network can significantly increase the number of

channels for short packets – resulting in higher overall

throughput. This is illustrated by the consistent higher

performance of W7_N8, W5_N24 and W4_N32 over the

baseline W8_N0. When the percentage of number of short

packets increases, intuitively it becomes favorable to provision

more bandwidth to the narrow network.

With a fixed percentage of short packets, there is a

sweet-point for the split-up of bandwidth between the two

networks. For example, when s = 0.5 and 0.55, W7_N8

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

B
re

ak
-d

o
w

n
 o

f
to

ta
l a

m
o

u
n

t
o

f
d

at
a

b
y

p
ac

ke
t

le
n

gt
h

Long (72-byte)

Short (8-byte)

performs best, reducing the total execution time by over 40%;

while for s = 0.6 ~ 0.85, W5_N24 takes over as the most

efficient, with a reduction in execution time as much as 69%.

Another point to be noted here is that excessive short

channels are not necessary. For example, comparing W4_N32

and W4_N16, they performed similarly with s of up to 0.75,

which means by employing two parallel networks, we can

reduce the amount of channel provisioning by 25% without

losing performance in these cases.

Figure 10. Token Linkup within a single stream

2) Distributed link-up of Tokens& Data slots.

Another natural extension of FlexiShare to support bimodal

packet size is to use consecutive tokens / data slots for long

packets so that we avoid the reassembly and re-ordering cost

incurred by sending separate packets for a chunk of data.

Similar to the baseline FlexiShare, this can be done in a

distributed fashion. Instead of having the dedication of the

tokens rotated every cycle, we can have consecutive tokens

dedicated to a same router. For example, assuming the long

packets are 2 flits long, for a radix-4 FlexiShare, in the

downstream direction, we can have a token stream of T0, T0’,

T1, T1’,T2,T2’…, as shown in Figure 10. Here, token Tx and

Tx’ are both dedicated to router Rx.

To send single-flit packets, the routers will behave exactly

the same as the baseline FlexiShare, trying to grab dedicated

tokens (both Tx and Tx’ for Rx) in the first pass, or any

available token in the second pass.

Suppose R0 is to send a long (2-flit) packet, it can grab token

T0 in the first pass in cycle 0 and it knows for sure the next

cycle it has token T0’ dedicated to it and it can send the two flits

in sequence on data slots D0 and D0’ – essentially linking up

the two tokens and data slots. However, if a long packet arrives

at R0 before cycle 1, it cannot grab T0’ in the first pass in cycle

1 as T1 in the next cycle is dedicated to R1. In the second pass,

tokens can also be linked up. For example, if a long packet

arrives at R1 before cycle 5, it can grab T1’ in the second pass in

cycle 5. However, there is no guarantee if R1 can get T2 in the

next cycle. If the upstream R0 grabbed T2, R1 will fail in getting

T2 and the granted T1’ can no longer be used for the long

packet. It can either be used for sending a short packet, if

available, or it will be wasted. The link-up of the tokens and

data slots can be easily indicated by a single bit in the head flit

for the receiver to properly process the arriving flits.

The advantage of this scheme is multifold. First, we maintain

the distributed arbitration and each router only relies on the

token stream for global information. Second, there is no

requirement for the number of channels to be provisioned. Even

with a single channel, we can support the bimodal packet sizes

and share all the channel resources across the network, without

assumption for the nature of the traffic load. Third, the router

design only needs slight modification from the baseline

FlexiShare and the added complexity is moderate.

However, this scheme also has some problems. First, it faces

fragmentation as in the second pass, there is no guarantee that

two consecutive tokens can be linked up. In the worst case half

of the bandwidth can be wasted (if alternative tokens are

grabbed for short packets) while blocking the transmission of

long packets. Second, the fragmentation problem aggravates

with increased packet size – as the probability to successfully

grab enough consecutive tokens on the second pass diminishes

with increased number of tokens needed. Thus, this scheme

might only work efficiently for long packets of no more than 2

flits. However, considering the large difference in size between

large and short packets (8-byte vs. 64-byte), this is sub-optimal

and will still waste part of the channel resource when sending

short packets. Third, as the token grabbing for long packets on

the second pass is speculative, it may result in the waste of

tokens at upstream nodes while blocking even short packet

traffic at downstream nodes.

3) Centralized link-up of Tokens and Data slots

To avoid the above mentioned fragmentation problem,

another option is to have a centralized arbiter for sending long

packets. When a node has short packets to send, it simply uses

the baseline two-pass token arbitration scheme of FlexiShare.

0 1 2 3 4 5
Cycle

R0

R1

R2

R3

T1 T2

6

T0

R0

R1

R2

R3

…
..
.

Token

Injection

D0' D1 D2D0

7 8

T0' T1'

T
0

'
T

0

D
0

'
D

0
…

..
. Data

Slots

D1'

D
0

...
...

...

1
st
 pass 2

nd
 pass

T2'

T1 T2T0 T0' T1' T2'

D2'

T1 T2T0

D0' D1 D2D0

T0' T1'

D1'

...
...

...

T2'

T1 T2T0 T0' T1' T2'

D2'

T1 T2T0

D0' D1 D2D0

T0' T1'

D1'

...
...

...

T2'

T1 T2T0 T0' T1' T2'

D2'

T1 T2T0

D0' D1 D2D0

T0' T1'

D1'

...
...

...

T2'

T1 T2T0 T0' T1' T2'

D2'

?

?

Figure 9.Normalized execution time for various channel provisioning in parallel networks.

0

0.5

1

1.5

0.5 0.55 0.65 0.75 0.85 0.95

N
o

rm
al

iz
e

d
 e

xe
cu

ti
o

n
 t

im
e

Percentage of number of short packets (s)

W8_N0(512)

W7_N8(512)

W5_N24(512)

W4_N32(512)

W4_N16(384)

W3_N32(448)

W3_N16(320)

W1_N32(320)

4.0 3.6 2.8 2.0

However, if a long packet comes, it will first send a request, as a

short packet, to a centralized arbiter, which makes an

arrangement for the long packet on a certain channel for several

slots in the future. Then the arbiter will send a short reply

packet to the requesting node, informing it the channel and data

slots allocated to it. The arbiter will also remove the

corresponding tokens for those data slots from the token stream

so that no other nodes can grab the tokens and occupy any of

the granted data slots.

The advantage of this scheme is that we can have much

narrower data path for short flits and more flits for long packets

and we do not have to worry about fragmentation. However,

there are also problems with this scheme. First, the

communication with the centralized arbiter incurs extra

zero-load latency. And such latency has to be carefully hidden

within the router so as to avoid compromising throughput –

resulting in significant router complexity. Second, for each

long packet sent, 2 short packets are needed as overhead. Third,

if narrow flit width is adopted and the long packets have many

flits, serialization latency will be significant. Last, but not the

least, the complexity of the centralized arbiter is high and it is

not scalable with increased network size.

4) Channel Link-up

A complementary scheme to token link-up is channel

link-up. With multiple channels present in the FlexiShare

network, it is possible to linkup multiple channels to send a

long packet in parallel. For example, Figure 11 shows the token

streams of two channels at router R0. Here, Tx is dedicated to

Rx in the first pass. We assume long packets are 2 flits long. In

the first pass, if R0 has a long flit to send before cycle 0, it is

guaranteed to get both T0’s on the two channels and can send

the two flits in parallel in cycle 3 on slot D0’s. If a long packet

arrives at R0 before cycle 4, however, it cannot grab the T1’s as

they are dedicated to R1, but it can try to grab the second pass

tokens T2 from the two channels. Similar to the token link-up

scheme discussed previously, this scheme suffers from

fragmentation and token wasting problems and it is also not

easy to support many-flit packets. Compared to token link-up,

this scheme might incur lower zero load latency as the long

packets are sent in parallel. However, it also requires multiple

channels to be provisioned.

Figure 11. Channel Link-up scheme at Router R0.

V. SUMMARY AND FUTURE WORK

In this work, we focused on two aspects of on-chip network

traffic : memory controller induced hotspot traffic pattern and

bimodal packet sizes. With a small number of memory

controllers shared among the cores, hot-spot traffic pattern can

be formed. We found the baseline FlexiShare is capable of

handling such hot-spot traffic thanks to its two-pass token

stream arbitration. However, the baseline token stream needs to

be altered to improve the fairness of the network.

To achieve better network efficiency, the bimodal packet

distribution of on-chip network traffic needs to be exploited.

We described four different schemes to enhance FlexiShare to

support bimodal packet sizes. The link-up of tokens or channels

fully shares the channel resources, but may not be efficient for

very large multi-flit packet. Parallel networks of different

datapath widths can be efficiently implemented and separately

provisioned for high utilization rate. However, this requires a

relatively stable mixture of the two types of packet lengths and

may be inefficient if phases of a single type of traffic exist.

In the future, we plan to explore different token streams in

FlexiShare to address the fairness issue and possibly employ

adaptive schemes to enforce strict fairness. We will also further

improve and evaluate the token/channel link-up schemes and

try to minimize the fragmentation and token wasting problems

under bimodal packet sizes. Extensive examination of more

realistic on-chip network traffic will help understand which

scheme is most efficient in a nanophotonic on-chip network.

REFERENCES

[1] W. Dally and B. Towles, "Route packets, not wires: on-chip

interconnection networks," Design Automation Conference, 2001.

Proceedings, 2001.

[2] C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M.

Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic,

and K. Asanovic, "Building Manycore Processor-to-DRAM Networks

with Monolithic Silicon Photonics," 2008 16th IEEE Symposium on

High Performance Interconnects, 2008, pp. 21-30.

[3] Y. Pan, J. Kim, and G. Memik, "FlexiShare: Energy-Efficient

Nanophotonic Crossbar Architecture through Channel Sharing," To

Applear in Proc. of International Symposium on High-Performance

Computer Architecture (HPCA), Bangalore, India: .

[4] D. Abts, N.D. Jerger, J. Kim, D. Gibson, and M.H. Lipasti, "Achieving

predictable performance through better memory controller placement

in many-core CMPs," ACM SIGARCH Computer Architecture News,

2009, p. 10.

[5] D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N.P. Jouppi,

M. Fiorentino, A. Davis, N. Binkert, R.G. Beausoleil, and J.H. Ahn,

"Corona: System Implications of Emerging Nanophotonic

Technology," International Symposium on Computer Architecture,

2008, p. 11.

[6] R.K. Dokania and A.B. Apsel, "Analysis of challenges for on-chip

optical interconnects," 19th ACM Great Lakes symposium on VLSI,

2009, p. 5.

[7] Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang, and A. Choudhary,

"Firefly: illuminating future network-on-chip with nanophotonics,"

Int'l Symposium on Computer Architecture, vol. 37, 2009, p. 11.

[8] W.J. Dally and B.P. Towles, Principles and Practices of

Interconnection Networks (The Morgan Kaufmann Series in Computer

Architecture and Design), Morgan Kaufmann, 2004.

[9] R. Das, S. Eachempati, A.K. Mishra, V. Narayanan, and C.R. Das,

"Design and evaluation of a hierarchical on-chip interconnect for

next-generation CMPs," 2009 IEEE 15th International Symposium on

High Performance Computer Architecture, 2009, pp. 175-186.

[10] A. Shacham, K. Bergman, and L.P. Carloni, "On the Design of a

Photonic Network-on-Chip," First International Symposium on

Networks-on-Chip (NOCS'07), 2007, pp. 53-64.

[11] J. Balfour and W.J. Dally, "Design tradeoffs for tiled CMP on-chip

networks," International Conference on Supercomputing, Cairns,

Queensland, Australia: 2006, pp. 187 - 198.

0 1 2 3 4 5
Cycle

Channel 0
T2 T1

6

T0

D1 D2 D1D0

7 8

T1 T0

D0

...

...

1
st
 pass 2

nd
 pass

T2

D2

...
Channel 1

T2 T1T0 T1 T0 ...T2

T2 T1T0

D1 D2 D1D0

T1 T0

D0

...T2

D2

T2 T1T0 T1 T0 ...T2

?

?

