
Functional Unit Selection in
Superscalar Microprocessors for Low Power

Pan Yan
National University of Singapore

panyan@nus.edu.sg

Tay Teng Tiow
National University of Singapore

eletaytt@nus.edu.sg

Abstract

A novel technique is introduced to reduce power

consumption in Functional Units (FU). Extra slower
FU with lower per-execution energy consumption are
added into a processor. Thus, through code
scheduling, instructions whose results are not
immediately referenced after completion are issued to
these power-frugal FU. Simulation suggests a prospect
of saving 20% to 30% energy consumption in addition
instructions while still improving the performance.

1. Introduction

Minimizing power consumption in microprocessors
has become a critical design consideration, especially
in battery-driven portable devices like PDAs and hand-
phones. In such devices, microprocessors are expected
not only to deliver high performance but also to
consume moderate energy.

Recently, various power reduction techniques
targeting on issue queue [1], execution core [2], cache
structure [3] and other components inside a processor
have been proposed. Apart from them, a most widely
used technique is Dynamic Voltage Scaling (DVS) [4],
which is based on the observation that maximum
performance is not always necessary and by cleverly
lowering the performance level here and there, the
overall energy consumption can be reduced.

However, none of these available techniques has
taken into account the fact that: 1) the design of
Functional Units (FU) is always aiming at providing
best performance; 2) the results of arithmetic and logic
instructions are not always immediately referred to
after their completion; 3) slower FUs, typically with a
simpler circuit structure, consume significantly less
energy than their faster counterparts [5]. Based on
these facts, we present, in this paper, a novel power
saving technique targeting on utilizing varied FU. We
introduce extra slow but power-frugal FU into a

processor. Hence, guided by the code scheduling
algorithm, we try to expose instructions that could be
executed in power-frugal FU while still keeping the
overall performance. Simulation shows the potential of
issuing 25% to 40% addition instructions to low power
integer ALU while slightly improving the execution
efficiency.

This technique provides a fine-grain mechanism for
lowering performance at an instruction-by-instruction
level, which allows instructions of different urgency to
be executed at different power price. This technique
can be implemented together with other power-saving
techniques like DVS [4] and FU assignment [2], so
whatever power saving achieved here is an extra gain.
What is more, the overall performance is not harmed,
thanks to the scheduling algorithm. The charm of this
method also lies in its wide applicability and simplicity
for practical implementation.

2. Hardware basis for FU selection

Our approach tries to execute instructions at
different power cost. To provide such a knob, we
intentionally introduce extra slower FU that has exact
function of their fast counterparts. A previous work [6]
has shown that slower FU are typically schematically
simpler, employ fewer transistors for a certain function,
and hence have lower per-execution energy.
Simulation in [6] has shown that this is true for all
kinds of FU, as shown in Table I. The simulation was
carried out in Synopsis under 0.35um technology.

The introduced power-frugal FU are associated with
additional instructions that will be employed by the
scheduling algorithm discussed in the next section.

3. Code Scheduling Algorithm

With the extra power-frugal FU introduced and
corresponding power-frugal instructions added, the
remaining job is to selectively substitute normal

instructions for its low power counterpart so that the
overall performance is not severely harmed.

3.1. Laxity of result generation

In order not to slow down the overall execution
while still using power-frugal FU, the crux is to finish
execution right before the result of an instruction is
referred to. Conventionally, as FU are designed to
provide best performance, many instructions are
finished long before necessary. We simulated various
benchmark programs on an out-of-order superscalar
processor architecture listed in Table II in the
SimpleScalar Toolset[6].

We added probes in the simulator to track the issue
time of each instruction. For simplicity, we only
analyzed addition instructions and estimated, for each
iteration, the time gap between the issue of each
addition and the issue of the first downstream
instruction that uses its result. The percentage of

addition instructions are listed as “Addition%” in
Table III. It can be seen they are predominant in every
benchmark. The percentage of executed addition
instructions that have a gap time of more than two
cycles at run-time are listed, as “Laxity%”. The
abundance of execution laxity is obvious, ranging from
25% to 35% of all executed addition instructions at

run-time. In code scheduling, our aim is thus to
substitute these instructions for their power-frugal
counterparts. What is more, we also try to re-order the
codes so as to increase this power saving potential.

3.2. Overview and definitions

We designed an all-in-one algorithm which both
tries to expose more instructions for power-frugal
execution and to make the FU selection. The objective
of the scheduling is first to minimize the execution
time and second to pick out instructions that are likely
to have enough laxity in result generation. The
algorithm works on each separate Basic Block (BB).
The general BB scheduling without FU selection,
which is NP-complete as discussed in [7], is a special
case of our program. Thus our problem is also NP-
complete. To prevent super large BB from severely
slowing down the scheduling of object codes, we chop
BB larger than 40 instructions into smaller pieces.
Such size limit does not noticeably harm the
scheduling room but effectively reduces scheduling
time.

To maintain the function of each BB, the Instruction
Dependence Table (IDT), which tracks the relationship
between each pair of instructions, is built. This is done
through a single-pass scanning, which compares the
input and output registers of each instruction. The IDT
hence serves as the constraint for the valid positions
for each instruction in the BB. An initially empty
pipeline is assumed for each BB. The scheduling is
carried out on a cycle-by-cycle basis, trying to fit as
many instructions with all-ready input registers into a
certain cycle slot as the issue width allows, emulating
the issue logic of out-of-order processors. Instructions
in a solution must preserve their original relative order
as in the original BB. To efficiently describe the
algorithm, we have the following definitions.

Definition: Dominance. Instruction i is said to
dominate j if j is Read-After-Write (RAW) dependent
on i according to IDT.

Definition: Semi-Dominance. Instruction i is said to
semi-dominate j if j is Write-After-Write (WAW) or
Write-After-Read (WAR) dependent on i in IDT.

Definition: Live Instruction. An instruction i is said
to be a live instruction for cycle n, if i is scheduled in a
previous cycle and has not finished execution.

Definition: Quasi-Ready Instruction. An instruction
i is said to be a quasi-ready instruction for cycle n if i
is not dominated by any un-scheduled or live
instruction for cycle n.

Table III Simulation Statistics
Bench-mark Coverage Addition% Laxity%
go 78.7% 37.9% 26.3%
ijpeg 72.4% 36.2% 26.2%
gcc 69.7% 31.5% 25.1%
bzip 79.5% 39.2% 32.0%
gzip 68.1% 35.8% 34.6%
mcf 76.2% 30.3% 28.7%
parser 75.2% 32.2% 28.1%
vpr 67.7% 33.1% 25.7%

Table II Processor Configuration
4 integer ALU Latency = 1 cycle
2 slow integer ALU Latency = 2 cycles Functional

Units 1 integer Multiplier 1 integer Divider
WidthDecode 4/cycle Fetch Speed 4 per cycle
WidthIssue 4/cycle Issue Mode Out-of-order

WidthCommit 4/cycle Branch Pred Bimod

Table I Per-execution Energy and Data Arrivals

Functions Fast Slow Difference
(%)

Energy (pJ) 56 23 33 (58.9%) Adder
Latency(ns) 3.77 12.00 8.23
Energy (pJ) 703 394 309 (44.0%) Multiplier
Latency(ns) 8.17 27.11 18.94
Energy (pJ) 1218 1049 169 (13.9%) Divider
Latency(ns) 30.26 54.68 24.42

Definition: Ready Instruction. An instruction i is
said to be a ready instruction for cycle n if i is a quasi-
ready instruction and also is not semi-dominated by
any quasi-ready instruction for cycle n.

Definition: Instruction Equivalence. Two
instructions i and j are said to be equivalent if the all
the following conditions are met at the same time:

1. For any other instruction k, either k dominates
both i and j or k dominates neither.

2. For any other instruction k, either both i and j
dominates k or neither dominates k.

3. The FU related to i and j are the same.
Definition: Group. Equivalent instructions are said

to be of a same group.

3.3. Scheduling Algorithm

For each cycle slot, IDT is first scanned to build a
pool of all the quasi-ready instructions. Then, all the
possible valid combinations of instructions to be filled
in the current cycle slot are generated. These
combinations of instructions are called solutions for a
specific cycle slot. A valid solution is one that meets
either of the following two conditions:

1. Consist of all ready instructions
2. Consist of some quasi-ready instructions and

all the un-scheduled instructions that semi-
dominate these quasi-ready instructions.

With the generated valid solutions, a trimming step
is taken to remove all the equivalent solutions to
improve the efficiency of this scheduling algorithm.
Two solutions are said to be equivalent if they have an
equal number of equivalent instructions in each group.

The remaining solutions are expanded with regard
to FU selection. That is, if a solution has n FU related
instructions and each of them has m possible versions
of FU of different latency, the solution will be
expanded to mn solutions, each of which represents a
different FU selection combination for the FU related
instructions. Redundant expanded solutions (for
example, supposing a solution to be expanded
containing two instructions A & B from a same group

that has 2 versions of FU associated, then one of [A1,
B2] and [A2, B1] is redundant as they are identical for
scheduling.) are again trimmed.

Now all the possible instructions to be issued in the
current cycle have been generated. The architecture of
the scheduler for one cycle is represented in Figure 1.

Each of these solutions will be tried for the current
cycle and the live instruction list will be updated
accordingly before the next cycle is triggered. Hence a
solution tree, illustrated in Figure 2, is explored

When all the instructions in the BB have been
scheduled, the trace from the cycle 1 level solution
node to the last cycle level solution node represents a
unique instruction order and FU selection. The total
number of cycles represents the estimated execution
duration of the BB. An optimal schedule of the BB is
the one having the lowest accumulated power cost
among those with the shortest estimated execution
duration. Obviously execution efficiency is the priority.

4. Simulation Results

We applied our scheduling algorithm on seven
SPEC benchmark programs compiled for the PISA
architecture [6]. For simplicity, only addition
instructions were analyzed. Scheduled codes were
executed on a processor model as described in Table I.
Statistics are listed in Table IV. Due to the BB size
limit and solution tree trimming , scheduling time for
the benchmark programs are all within 10 minutes on a
Pentium 4 3GHz desktop PC.

Figure 1. Scheduler Architecture

Table IV Scheduled Statistics
Bench-
marks

Static
Tag-rate

Dynamic
Tag-rate

Baseline
IPC

Unsched
. IPC

Sched.
IPC

go 30.1% 27.9% 0.9516 0.9497 0.9537
ijpeg 33.7% 29.5% 1.3701 1.3744 1.3809
gcc 24.9% 25.4% 1.0825 1.0811 1.0859
bzip 26.6% 37.1% 1.4200 1.4149 1.4246
gzip 24.2% 39.6% 1.4762 1.4738 1.4829
mcf 24.5% 30.3% 0.6721 0.6729 0.6728
parser 26.9% 29.5% 0.9892 0.9887 0.9955
vpr 31.8% 27.5% 1.1703 1.1623 1.1707

Figure 2. Solution Tree

The scheduling algorithm re-orders instructions so
as to allow more laxity for result generation. As a
result, approximately 25% to 33% addition instructions
were statically identified as candidates for power-
frugal execution in the object codes, as shown in
column 2 in Table IV. This static tag-rate, however, is
not representative of power reduction because
instructions are not evenly executed throughout the
object code. As the power consumption is calculated
by the actual FU energy dissipated at run time, the
dynamic tag-rate, which is generated by another round
of simulation of the modified object codes, should be
used for estimating the overall power saving. This
dynamic tag-rate can be compared with the “Laxity%”
in Table III, as illustrated by the figure below.

The “Laxity%” is the actual result generation laxity
of each original object code at run time. Through
instruction re-ordering, our scheduling algorithm
exposed more candidates for low-power execution than
the original and effectively achieves 101% to 116% of
the power saving potential. Assuming the adder energy
profile in Table I, around 20% to 30% of dynamic
power saving can be achieved in integer adders.

While saving the dynamic power, our algorithm
does not compromise the execution performance of the
object code, but rather slightly improves it. Instruction
Per Cycle (IPC) is used as the index for execution
performance.

In our algorithm, there are two contradictory forces
that affect the IPC of the scheduled codes. On the one
hand, the algorithm makes “shortest execution
duration” its first priority and hence tends to improve
the IPC of the scheduled code by re-ordering. On the
other hand, the BB-based algorithm inevitably incurs
some inaccuracy in estimating the execution laxity of
each instruction and thus may cause IPC degradation.
To split the two effects, we generated another set of
object codes that only contains FU selection according
to the simulation statistic. In these “un-scheduled”
object codes, addition instructions that have result
generation laxity of more than 2 cycles for over 90% of

execution iterations were tagged for low-power
execution. Simulation results show that the IPC of
many of these unscheduled codes slightly degraded
(less than 0.8%) as expected. The exception of ijpeg
and mcf are possibly because the extra FU included
relieved resource conflicts. Such performance
degradation is already trivial. However, with our
algorithm, the scheduled codes all enjoy improved IPC,
demonstrating that the FU selection inaccuracy is
satisfactorily counteracted by the performance gain
caused by code order scheduling.

5. Conclusion

In this paper, we presented a novel processor power
reduction technique by executing instructions of
different urgency at different power cost. Through
static object code scheduling, instructions with enough
execution laxity are exposed, substituted for power-
frugal counterparts and hence executed in low power
FU. Simulation shows a prospect of saving 20% to
30% energy in integer adders while still slightly
improving IPC.

6. References

[1] T. M. Jones, et al, “Software Directed Issue Queue Power
Reduction”, Proc. of HPCA-11, 2005.
[2] S. Haga, et al, “Dynamic Functional Unit Assignment for
Low Power”, Proceedings of DATE’03, 2003.
[3] W. Zhang, et al, “Compiler-Directed Instruction Cache
Leakage Optimization”, MICRO-35, 2002
[4] T.D. Burd, et al, “A dynamic voltage scaled
microprocessor system”, Solid-State Circuits, IEEE Journal
of, Nov. 2000
[5] T.T. Tay et al, “Hw/Sw Co-Design for Low Power
Arithmetic and Logic Units”, Int’l Jnrl. of Software Eng. and
Knowledge Eng. 15(2): pg. 335-342, 2005.
[6] D. Burger and T. Austin. The SimpleScalar Tool Set,
Version 3.0. Technical report, Computer Sciences
Department, University of Wisconsin-Madison, 1999.

0%

10%

20%

30%

40%

50%

go
ijp

eg gcc bzip gzip mcf

pars
er vp

r

Laxity% DynamicTag-rate

Figure 3. Power-frugal Execution Percentage

-0.80%
-0.60%
-0.40%
-0.20%
0.00%
0.20%
0.40%
0.60%
0.80%
1.00%

go
ijp

eg gc
c

bz
ip

gz
ip mcf

pa
rse

r
vp

r

Unscheduled Code Scheduled Code

Figure 4. Normalized IPC Difference

[7] P. Faraboschi, et al, “Instruction Scheduling for
Instruction Level Parallel Processors”, Proc. of The IEEE,
Vol. 89,, No. 11, November 2001.

