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Abstract 

 
A novel technique is introduced to reduce power 

consumption in Functional Units (FU). Extra slower 
FU with lower per-execution energy consumption are 
added into a processor. Thus, through code 
scheduling, instructions whose results are not 
immediately referenced after completion are issued to 
these power-frugal FU. Simulation suggests a prospect 
of saving 20% to 30% energy consumption in addition 
instructions while still improving the performance.  
 
 
1. Introduction 
 

Minimizing power consumption in microprocessors 
has become a critical design consideration, especially 
in battery-driven portable devices like PDAs and hand-
phones. In such devices, microprocessors are expected 
not only to deliver high performance but also to 
consume moderate energy. 

Recently, various power reduction techniques 
targeting on issue queue [1], execution core [2], cache 
structure [3] and other components inside a processor 
have been proposed. Apart from them, a most widely 
used technique is Dynamic Voltage Scaling (DVS) [4], 
which is based on the observation that maximum 
performance is not always necessary and by cleverly 
lowering the performance level here and there, the 
overall energy consumption can be reduced.  

However, none of these available techniques has 
taken into account the fact that: 1) the design of 
Functional Units (FU) is always aiming at providing 
best performance; 2) the results of arithmetic and logic 
instructions are not always immediately referred to 
after their completion; 3) slower FUs, typically with a 
simpler circuit structure, consume significantly less 
energy than their faster counterparts [5]. Based on 
these facts, we present, in this paper, a novel power 
saving technique targeting on utilizing varied FU. We 
introduce extra slow but power-frugal FU into a 

processor. Hence, guided by the code scheduling 
algorithm, we try to expose instructions that could be 
executed in power-frugal FU while still keeping the 
overall performance. Simulation shows the potential of 
issuing 25% to 40% addition instructions to low power 
integer ALU while slightly improving the execution 
efficiency.  

This technique provides a fine-grain mechanism for 
lowering performance at an instruction-by-instruction 
level, which allows instructions of different urgency to 
be executed at different power price. This technique 
can be implemented together with other power-saving 
techniques like DVS [4] and FU assignment [2], so 
whatever power saving achieved here is an extra gain. 
What is more, the overall performance is not harmed, 
thanks to the scheduling algorithm. The charm of this 
method also lies in its wide applicability and simplicity 
for practical implementation. 
 
2. Hardware basis for FU selection 
 

Our approach tries to execute instructions at 
different power cost. To provide such a knob, we 
intentionally introduce extra slower FU that has exact 
function of their fast counterparts. A previous work [6] 
has shown that slower FU are typically schematically 
simpler, employ fewer transistors for a certain function, 
and hence have lower per-execution energy. 
Simulation in [6] has shown that this is true for all 
kinds of FU, as shown in Table I. The simulation was 
carried out in Synopsis under 0.35um technology.  

The introduced power-frugal FU are associated with 
additional instructions that will be employed by the 
scheduling algorithm discussed in the next section.  
 
3. Code Scheduling Algorithm 
 

With the extra power-frugal FU introduced and 
corresponding power-frugal instructions added, the 
remaining job is to selectively substitute normal 



instructions for its low power counterpart so that the 
overall performance is not severely harmed.  
 
3.1. Laxity of result generation 
 

In order not to slow down the overall execution 
while still using power-frugal FU, the crux is to finish 
execution right before the result of an instruction is 
referred to. Conventionally, as FU are designed to 
provide best performance, many instructions are 
finished long before necessary. We simulated various 
benchmark programs on an out-of-order superscalar 
processor architecture listed in Table II in the 
SimpleScalar Toolset[6].   

We added probes in the simulator to track the issue 
time of each instruction. For simplicity, we only 
analyzed addition instructions and estimated, for each 
iteration, the time gap between the issue of each 
addition and the issue of the first downstream 
instruction that uses its result. The percentage of 

addition instructions are listed as “Addition%” in 
Table III. It can be seen they are predominant in every 
benchmark. The percentage of executed addition 
instructions that have a gap time of more than two 
cycles at run-time are listed, as “Laxity%”. The 
abundance of execution laxity is obvious, ranging from 
25% to 35% of all executed addition instructions at 

run-time. In code scheduling, our aim is thus to 
substitute these instructions for their power-frugal 
counterparts. What is more, we also try to re-order the 
codes so as to increase this power saving potential. 
 
3.2. Overview and definitions 
 

We designed an all-in-one algorithm which both 
tries to expose more instructions for power-frugal 
execution and to make the FU selection. The objective 
of the scheduling is first to minimize the execution 
time and second to pick out instructions that are likely 
to have enough laxity in result generation. The 
algorithm works on each separate Basic Block (BB). 
The general BB scheduling without FU selection, 
which is NP-complete as discussed in [7], is a special 
case of our program. Thus our problem is also NP-
complete. To prevent super large BB from severely 
slowing down the scheduling of object codes, we chop 
BB larger than 40 instructions into smaller pieces. 
Such size limit does not noticeably harm the 
scheduling room but effectively reduces scheduling 
time. 

To maintain the function of each BB, the Instruction 
Dependence Table (IDT), which tracks the relationship 
between each pair of instructions, is built. This is done 
through a single-pass scanning, which compares the 
input and output registers of each instruction. The IDT 
hence serves as the constraint for the valid positions 
for each instruction in the BB. An initially empty 
pipeline is assumed for each BB. The scheduling is 
carried out on a cycle-by-cycle basis, trying to fit as 
many instructions with all-ready input registers into a 
certain cycle slot as the issue width allows, emulating 
the issue logic of out-of-order processors. Instructions 
in a solution must preserve their original relative order 
as in the original BB. To efficiently describe the 
algorithm, we have the following definitions.  

Definition: Dominance. Instruction i is said to 
dominate j if j is Read-After-Write (RAW) dependent 
on i according to IDT.  

Definition: Semi-Dominance. Instruction i is said to 
semi-dominate j if j is Write-After-Write (WAW) or 
Write-After-Read (WAR) dependent on i in IDT.  

Definition: Live Instruction. An instruction i is said 
to be a live instruction for cycle n, if i is scheduled in a 
previous cycle and has not finished execution. 

Definition: Quasi-Ready Instruction. An instruction 
i is said to be a quasi-ready instruction for cycle n if i 
is not dominated by any un-scheduled or live 
instruction for cycle n.  

Table III Simulation Statistics 
Bench-mark Coverage Addition% Laxity% 
go 78.7% 37.9% 26.3% 
ijpeg 72.4% 36.2% 26.2% 
gcc 69.7% 31.5% 25.1% 
bzip 79.5% 39.2% 32.0% 
gzip 68.1% 35.8% 34.6% 
mcf 76.2% 30.3% 28.7% 
parser 75.2% 32.2% 28.1% 
vpr 67.7% 33.1% 25.7% 

Table II Processor Configuration 
4 integer ALU            Latency = 1 cycle 
2 slow integer ALU    Latency = 2 cycles Functional 

Units 1 integer Multiplier    1 integer Divider 
WidthDecode 4/cycle Fetch Speed 4 per cycle 
WidthIssue 4/cycle Issue Mode Out-of-order 

WidthCommit 4/cycle Branch Pred Bimod 

Table I Per-execution Energy and Data Arrivals

Functions Fast Slow Difference 
(%) 

Energy (pJ) 56 23 33 (58.9%) Adder 
Latency(ns) 3.77 12.00 8.23 
Energy (pJ) 703 394 309 (44.0%) Multiplier 
Latency(ns) 8.17 27.11 18.94 
Energy (pJ) 1218 1049 169 (13.9%) Divider 
Latency(ns) 30.26 54.68 24.42 



Definition: Ready Instruction. An instruction i is 
said to be a ready instruction for cycle n if i is a quasi-
ready instruction and also is not semi-dominated by 
any quasi-ready instruction for cycle n. 

Definition: Instruction Equivalence. Two 
instructions i and j are said to be equivalent if the all 
the following conditions are met at the same time: 

1. For any other instruction k, either k dominates 
both i and j or k dominates neither. 

2. For any other instruction k, either both i and j 
dominates k or neither dominates k. 

3. The FU related to i and j are the same. 
Definition: Group. Equivalent instructions are said 

to be of a same group. 
 
3.3. Scheduling Algorithm 
 

For each cycle slot, IDT is first scanned to build a 
pool of all the quasi-ready instructions. Then, all the 
possible valid combinations of instructions to be filled 
in the current cycle slot are generated. These 
combinations of instructions are called solutions for a 
specific cycle slot. A valid solution is one that meets 
either of the following two conditions: 

1. Consist of all ready instructions  
2. Consist of some quasi-ready instructions and 

all the un-scheduled instructions that semi-
dominate these quasi-ready instructions.  

With the generated valid solutions, a trimming step 
is taken to remove all the equivalent solutions to 
improve the efficiency of this scheduling algorithm. 
Two solutions are said to be equivalent if they have an 
equal number of equivalent instructions in each group.  

The remaining solutions are expanded with regard 
to FU selection. That is, if a solution has n FU related 
instructions and each of them has m possible versions 
of FU of different latency, the solution will be 
expanded to mn solutions, each of which represents a 
different FU selection combination for the FU related 
instructions. Redundant expanded solutions (for 
example, supposing a solution to be expanded 
containing two instructions A & B from a same group 

that has 2 versions of FU associated, then one of [A1, 
B2] and [A2, B1] is redundant as they are identical for 
scheduling.) are again trimmed. 

Now all the possible instructions to be issued in the 
current cycle have been generated. The architecture of 
the scheduler for one cycle is represented in Figure 1.  

Each of these solutions will be tried for the current 
cycle and the live instruction list will be updated 
accordingly before the next cycle is triggered. Hence a 
solution tree, illustrated in Figure 2, is explored  

When all the instructions in the BB have been 
scheduled, the trace from the cycle 1 level solution 
node to the last cycle level solution node represents a 
unique instruction order and FU selection. The total 
number of cycles represents the estimated execution 
duration of the BB. An optimal schedule of the BB is 
the one having the lowest accumulated power cost 
among those with the shortest estimated execution 
duration. Obviously execution efficiency is the priority. 
 
4. Simulation Results 
 

We applied our scheduling algorithm on seven 
SPEC benchmark programs compiled for the PISA 
architecture [6]. For simplicity, only addition 
instructions were analyzed. Scheduled codes were 
executed on a processor model as described in Table I. 
Statistics are listed in Table IV. Due to the BB size 
limit and solution tree trimming , scheduling time for 
the benchmark programs are all within 10 minutes on a 
Pentium 4 3GHz desktop PC. 

Figure 1. Scheduler Architecture 

Table IV Scheduled Statistics 
Bench-
marks 

Static 
Tag-rate

Dynamic
Tag-rate

Baseline 
IPC 

Unsched
. IPC 

Sched. 
IPC 

go 30.1% 27.9% 0.9516 0.9497 0.9537
ijpeg 33.7% 29.5% 1.3701 1.3744 1.3809
gcc 24.9% 25.4% 1.0825 1.0811 1.0859
bzip 26.6% 37.1% 1.4200 1.4149 1.4246
gzip 24.2% 39.6% 1.4762 1.4738 1.4829
mcf 24.5% 30.3% 0.6721 0.6729 0.6728
parser 26.9% 29.5% 0.9892 0.9887 0.9955
vpr 31.8% 27.5% 1.1703 1.1623 1.1707

Figure 2. Solution Tree 



The scheduling algorithm re-orders instructions so 
as to allow more laxity for result generation. As a 
result, approximately 25% to 33% addition instructions 
were statically identified as candidates for power-
frugal execution in the object codes, as shown in 
column 2 in Table IV. This static tag-rate, however, is 
not representative of power reduction because 
instructions are not evenly executed throughout the 
object code. As the power consumption is calculated 
by the actual FU energy dissipated at run time, the 
dynamic tag-rate, which is generated by another round 
of simulation of the modified object codes, should be 
used for estimating the overall power saving. This 
dynamic tag-rate can be compared with the “Laxity%” 
in Table III, as illustrated by the figure below. 

The “Laxity%” is the actual result generation laxity 
of each original object code at run time. Through 
instruction re-ordering, our scheduling algorithm 
exposed more candidates for low-power execution than 
the original and effectively achieves 101% to 116% of 
the power saving potential. Assuming the adder energy 
profile in Table I, around 20% to 30% of dynamic 
power saving can be achieved in integer adders.  

While saving the dynamic power, our algorithm 
does not compromise the execution performance of the 
object code, but rather slightly improves it. Instruction 
Per Cycle (IPC) is used as the index for execution 
performance.  

In our algorithm, there are two contradictory forces 
that affect the IPC of the scheduled codes. On the one 
hand, the algorithm makes “shortest execution 
duration” its first priority and hence tends to improve 
the IPC of the scheduled code by re-ordering. On the 
other hand, the BB-based algorithm inevitably incurs 
some inaccuracy in estimating the execution laxity of 
each instruction and thus may cause IPC degradation. 
To split the two effects, we generated another set of 
object codes that only contains FU selection according 
to the simulation statistic. In these “un-scheduled” 
object codes, addition instructions that have result 
generation laxity of more than 2 cycles for over 90% of 

execution iterations were tagged for low-power 
execution. Simulation results show that the IPC of 
many of these unscheduled codes slightly degraded 
(less than 0.8%) as expected. The exception of ijpeg 
and mcf are possibly because the extra FU included 
relieved resource conflicts. Such performance 
degradation is already trivial. However, with our 
algorithm, the scheduled codes all enjoy improved IPC, 
demonstrating that the FU selection inaccuracy is 
satisfactorily counteracted by the performance gain 
caused by code order scheduling. 
 
5. Conclusion 
 

In this paper, we presented a novel processor power 
reduction technique by executing instructions of 
different urgency at different power cost. Through 
static object code scheduling, instructions with enough 
execution laxity are exposed, substituted for power-
frugal counterparts and hence executed in low power 
FU. Simulation shows a prospect of saving 20% to 
30% energy in integer adders while still slightly 
improving IPC. 
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Figure 3. Power-frugal Execution Percentage
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