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ABSTRACT 

Chip multiprocessor designs are the most common types of 

architectures seen in Network Processors. As the Network 

Processors are used to implement increasingly complicated 

applications, task distribution among the cores is becoming 

an important problem. In this paper, we propose a new task 

allocation scheme for such architectures. This scheme relies 

on the inherent modular nature of the networking 

applications and intelligently distributes modules among 

different execution cores. Additionally, we selectively 

replicate modules to parallelize execution of tasks having 

longer processing time. We have developed a technique that 

uses the probability distribution of the execution times of 

different modules in the networking applications. The 

proposed schemes result in resource utilization of up to 

95%, 89%, and 84% on average for the processors with 2, 4, 

and 8 cores, respectively. The schemes are highly scalable 

and can improve the throughput by 6.72 times for 8 core 

processors, aggregated over four representative 

applications. The combination of selective replication of 

modules and variation-aware task allocation result in up to 

12.5% (9.9% on average) performance improvement as 

compared to a scheme based on just mean processing time.
1
 

Categories and Subject Descriptors 

C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design – Packet-switching networks. 

General Terms 
Algorithms, Performance 

1. Introduction 
A Network Processor (NP) is an Application Specific 

Instruction Processor (ASIP) for the networking application 
domain – a software programmable device with architectural 
features and/or special circuitry for packet processing. The 
ever-increasing complexity of the networking applications 
demands evolution of a class of processors, which are fully 
dedicated for such applications. Furthermore, customer 
innovation demands the ability to perform detailed 
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inspection on each packet and even to make routing 
decisions based upon content.  

Traditionally, networking equipment manufacturers 
have been forced to develop ASICs due to the high 
performance requirements of the high-speed links. The 
classical networking challenge is to maintain stability while 
maximizing throughput and minimizing latency for the 
worst-case traffic. Such a scenario has presented the circuit 
designers with the huge opportunity to develop a new class 
of processors–the Network Processors (NPs). As suggested 
by the industry watchers [25], a steady rise in demand for 
application specific hardware for networking applications 
would drive the research for innovative technologies in 
network processor architectures.  

Although NP architectures vary significantly in their 
design styles (c.f., Table 1), Chip Multiprocessor (CMP) is 
arguably the most common architectural method: most 
designs including Intel IXP architectures [8-10] , Cisco 
Toaster [13] and Freescale C-5 [15] follow the CMP style. 
The reason for this selection lies in the nature of the 
networking applications. Most networking applications 
exhibit high data and task level parallelism, whereas the 
instruction level parallelism is relatively limited. In addition, 
most applications are relatively simple. Therefore, designers 
utilize several simple execution cores that can take 
advantage of the data/task level parallelism without 
complicating the design process.  

One of the most important bottlenecks for CMP 
processors in general, and particularly the NP architectures, 
is the low scalability of the interconnect networks. Although 
increasing the number of cores in the processor is desirable 
to take advantage of the parallelism in the application, 
developing an interconnect network to achieve efficient 
communication among cores becomes complicated as the 
number of nodes is increased. Therefore, with the next 
generation NP architectures, we are seeing an increased 
emphasis on local communication. For example, the Intel 
IXP 28xx [8, 10] architectures utilize neighbor-to-neighbor 
links in addition to the global communication structures. In 
such architectures, the utilization of the local communication 
links is arguably the most important factor in determining the 
performance of the application. With the increasing link 
speeds and the changes in the target applications, it is 
expected that the number of execution cores in the 
processors will increase. Therefore, high utilization of local 
communication links will become an obligation to achieve 
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the desired scalability in next-generation NPs. Clearly, the 
key factor that determines the communication behavior is the 
task distribution. In most of the existing architectures, this 
task is left to the user. With the increasing complexity of the 
architectures, this expectation from the user becomes 
limiting and an automated task distribution scheme is highly 
desirable. In this paper, we propose a solution to this 
problem. Particularly, we present an automated task 
allocation scheme for NPs. We utilize the modular nature 
observed in majority of networking applications. First, we 
divide the applications into modules similar to CLICK [12] 
and NP-Click [21] environments. Then, we profile the 
applications using a representative workload and perform a 
statistical analysis on the behavior of different modules in 
the application. This analysis provides us with the 
distribution of the execution times of different modules. 
Then, we utilize this probability distribution information to 
allocate tasks among different execution cores of the NPs. In 
addition to utilizing this information to decide on task 
distribution, we also make decisions about which modules 
should be replicated based on the analysis. Specifically, our 
contributions in this paper are as follows:  

• We analyze the probability distribution of packet 
processing elements in modular networking 
applications, 

• We present an intelligent methodology to allocate tasks 
among different processor cores of a chip 
multiprocessor, and  

• We show experimental results investigating the impact 
of our task allocation scheme and compare it to 
alternatives.  

Our main goal is to reduce the effect of the variation in 
the execution times of the packets. To be more precise, we 
would like to schedule the tasks such that the effects of 
variation will be minimized. The variation in the execution 
times is an inherent property of computing. This is 
particularly true for CMPs, where different cores are 
competing for a set of global resources (e.g., shared bus or 
the shared memory). In addition, there is data-dependent 
variation, i.e., depending on the particular input the 
execution time may vary. For example, a loop might be 
executed for different number of iterations based on the input 
data. This uncertainty is even more pressing if the cores 
implement multithreading (as commonly done for most NP 
architectures). The order in which the threads are selected 
and the order of the packet arrival are likely to have a 
significant impact on the time of completion for a single 
thread. This inherent variation in execution time is an 
important reason for the complexity of task distribution.  

2. Modularity in Network Applications 
The Network Processor (NP) designers utilize two 

important properties of networking applications. First, these 
applications consume and produce well-defined data 
segments (network packets). This property leads the 
designers to utilize intelligent memory controllers 

specifically designed to move packet data to/from and within 
the processor. Secondly, for many of the networking 
applications, though not all, these packets can be processed 
independently. Therefore, there is a large amount of data 
level parallelism available in the applications. The designers 
take advantage of this fact with the use of multithreading and 
with multiple execution cores. Almost all of the NPs use a 
variation of multithreading and have several execution cores. 
Table 1 presents some characteristics of the representative 
NPs, i.e. the number of execution cores and the parallelism 
technique (data or instruction level parallelism) employed in 
these processors. Another important property of these 
applications that is mostly overlooked is their modular 
nature. Most of the networking applications implement a set 
of tasks that have to be performed on each packet. In many 
cases, these tasks are defined by international standardization 
organizations. Hence, it is easier for a designer to visualize 
the application as a set of tasks (or modules) instead of a 
traditional program implemented in a high-level program 
such as C. In this work, we develop techniques that take 
advantage of this modular nature of the networking 
applications.  

Table 1. Important characteristics of representative Network 

Processor Designs: exec. cores is the number of execution cores, 

and parallelism technique is the technique(s) used for task or 

instruction level parallelism (MT: Multi-Threading, VLIW: 

Very-Long Instruction Word) in the execution cores 

Processor # of cores Parallelism 

technique 
Agere PayloadPlus 3 MT, VLIW 

AMMC (MMC) nP7250 2 MT 

Bay Microsystems Chespeake 2 MT 

Broadcom BCM-1250 2 Superscalar 

Cavium Octeon 16 MT 

Cisco Toaster 16 VLIW 

EZChip ~40 MT 

Freescale C-5 16 MT 

Hifn 5NP4G 16 MT 

Intel IXP2800 16 MT 

Intel IXP1200 6 MT 

PMC-Sierra RM9000 2 Superscalar 

Vitesse (Sitera) IQ1200 4 MT 

Wintegra WinPath2 6 MT 

Xelerated Xelerator X11 360 VLIW, MT 

Another important aspect that needs to be highlighted is 
the trend in the NP architectures. Each new NP generation 
employs more execution cores than their predecessors. 
Therefore, traditional communication structures between 
these execution cores (global buses or cross-bar based 
fabrics) become less effective. Many of the newer NPs 
employ special neighbor-to-neighbor communication 
(systolic array) or enhanced interconnection networks to 
reduce the need for accessing global structures. In such 
systems, effective task allocation becomes particularly hard 
even for the most experienced programmers. 
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In the past, modular routers have gained much focus due 
to their ease of designing. CLICK [12] and Baker [24] are 
examples of domain specific languages designed for 
describing networking applications. We design our 
framework based on the CLICK framework. CLICK is a 
flexible, software modular architecture, which can build 
routers from fine-grained components. Each of these 
components, known as element, performs a simple task, such 
as decrementing an IP packet’s time-to-live (TTL) or IP 
header checking. They can easily be extended to do 
complicated tasks (IP lookup, NAT). To build a router 
configuration, the user chooses a collection of elements and 
connects them into a directed flow graph. The nodes being 
elements, the connections between those elements represent 
a forwarding path. Click configuration scripts are written in a 
simple language with two important constructs: declarations 
create elements, and connections say how they should be 
connected. 

 

 

 

 

 

 

Figure 1. Click configuration for TTL decrement 

The Click language is wholly declarative. It specifies 
what elements to create and how they should be connected, 
not how to process packets procedurally. Router 
manipulation tools can take advantage of these properties to 
optimize router configurations offline or prove simple 
properties about them. The main goals behind the Click 
language are usability and extensibility. Figure 1 shows a 
Click diagram of a simple configuration that checks the TTL 
value of a packet. It forwards the packet if the TTL value is 
non-negative. Otherwise, the packet is discarded.  

NP-Click [21] is an extended programming model based 
on Click Router and implemented on the Intel IXP1200. It is 
a combination of an efficient abstraction of the NP with 
features of a domain-specific language for networking. The 
result is a natural abstraction that enables programmers to 
quickly write efficient code. It facilitates the difficulties of 
programming NPs by taking advantage of hardware 
parallelism, arbitration of shared resources, and efficient data 
layout. Our optimizations are based on this type of a 
programming language and can be readily applied to them. 

3. Applications 
We explore the effectiveness of our task allocation 

techniques by using it to schedule four representative 
networking applications. This section describes these 
applications.  

IPV4Router: We implement the data plane of an 8 port 
Fast Ethernet IP Version 4 router [1]. This application is 
based on the NP benchmark specified by Tsai et al. [23]. A 
packet arriving on port P is to be examined and forwarded on 
a different port P’. We use a static lookup table to decide the 
next-hop location. It is determined through a longest prefix 
match (LPM) on the IPv4 destination address field. The 
packet header and payload are checked for validity and 
packet header fields’ checksum and TTL are updated. Figure 
2 shows the Click configuration tree of this application.  

DRR: We extend the IP router demonstrated in the Click 
Modular Router project. The router that forwards unicast 
packets in nearly full compliance with the standards [1, 17, 
18]. We introduce a queue which introduces packet by 
pulling from a set of infinite packet source using deficit 
round robin (drr) scheduling [19]. 

RED: Random early detection is more likely to drop 
packets when there is network congestion; when there are 
many packets in the queue servicing that link. The RED 
element therefore queries router queue lengths when 
deciding whether to drop a packet. 

For this application, we extend the Click IP router to 
handle specialized routing tasks. Particularly, a complex IP 
router performs the following tasks: two parallel T1 links to 
a backbone, between which traffic should be load balanced; 
division of traffic into two priority levels; fairness among the 
connections within each priority level; and RED dropping 
driven by the total number of packets queued. Click's 
modular scheduling, queuing and dropping policy elements 
are used in this application. 

HOME_NODE: This application imitates an active 
home node in a network. The home node proxy-ARPs for the 
mobile node, decapsulates packets from the remote node, 
sending them onto the local network, and perform IP 
encapsulation for packets destined for the mobile node. It 
also ensures that packets generated by the address 1.0.0.10 
are properly encapsulated. 

3.1 Probability Distribution of Packets 
In this section, we discuss the probability distribution of 

the packet processing time in a Click modular application. 
For the sake of conciseness, we describe the results for only 
the IPV4Router application in detail. The IPV4Router 
application consists of 33 Click elements. It has five 
different basic elements – Strip, CheckIPHeader, 

StaticIPLookup, DropBroadcast, DecIPTTL [11].  

Figure 2 shows a graphical representation of the Click 
description of the router and the relation between the basic 
elements (i.e., modules). The rest of the applications are 
analyzed in the same fashion and their results are 
summarized at the end of this section in Table 3. The 
simulation environment used to gather the statistics is 
described in Section 5.1. 

FromDevice(eth0) 

DecIPTTL ToDevice(eth1) 

Discard 
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Figure 2.  Click configuration tree for the IPV4Router application 

Table 2 : Probability Distribution of IPV4Router Elements and 

the fraction of packets that have execution times exceeding 

µ+k*σ 

 

Mean 

(µ) 

SD 

(σ) 

Processing time threshold 

µ µ+σ µ+2σ µ+3σ µ+4σ 

strip0 241.28 29.31 50.00 0.64 0.64 0.64 0.00 

strip1 232.00 22.11 34.19 33.33 0.00 0.00 0.00 

strip2 220.18 25.24 31.81 25.00 0.00 0.00 0.00 

strip3 216.05 19.87 35.06 20.00 3.63 0.00 0.00 

chkip0 713.01 59.77 50.00 0.64 0.64 0.64 0.64 

chkip1 695.22 31.48 34.63 33.33 0.86 0.43 0.00 

chkip2 695.49 25.09 27.59 25.00 0.97 0.00 0.00 

chkip3 694.63 21.77 20.00 20.00 2.33 0.00 0.00 

RtLkUp 336.56 266.88 20.03 20.03 10.01 0.03 0.03 

DBC0 212.30 21.18 34.32 28.57 1.29 0.18 0.18 

DBC1 197.42 18.51 51.29 26.94 25.00 0.64 0.00 

DBC2 210.45 26.50 18.39 2.16 0.00 0.00 0.00 

DBC3 205.47 17.40 32.83 14.28 14.28 0.00 0.00 

DcTTL0 317.78 20.34 26.45 12.98 2.09 0.00 0.00 

DcTTL1 320.33 21.10 35.71 26.62 0.00 0.00 0.00 

DcTTL2 315.96 19.6 20.99 17.09 1.29 0.00 0.00 

DcTTL3 314.77 18.26 19.85 14.28 0.55 0.00 0.00 

We execute the configuration for 5000 packets. During 
this execution, we record the amount of time spent by each 
packet in different elements of the Click router. Using these 
statistics, we find the mean and the standard deviation of the 
execution times. Table 2 presents the results for the 17 
representative elements along with their execution times in 
the configuration. Once we extract the mean (µ) and the 
standard deviation (σ) of processing time by each of the 
element, we compare them against the data recorded for each 
packet traversed through it. The four right-most columns in 
the Table 2 present the percentage of packets that couldn’t 
be processed within the slack given by the expression (µ + 
k*σ), where k is a positive constant.  

Table 3: Probability Distribution of Application Elements 

 Mean(µ) SD(σ) 
Processing time threshold 

µ µ+σ µ+2σ µ+3σ µ+4σ 

DRR 
Cl1 351.20 24.13 55.35 9.81 0.88 0.13 0.13 

DRRelem 17032.70 76778.25 45.23 0.13 0.13 0.13 0.13 

IPCheck 31.66 38.14 13.82 0.25 0.25 0.25 0.00 

RtLkUp 349.70 220.44 22.86 22.86 0.63 0.13 0.13 

ChkPnt 19552.00 46879.27 7.64 7.64 7.64 7.64 0.33 

FixIP 219.20 14.64 34.83 25.87 0.00 0.00 0.00 

Frag 183.94 18.11 53.23 23.38 4.48 0.00 0.00 

RED 
RED 834.80 142.74 39.33 6.78 6.61 5.72 0.06 

StripHdr 204.00 9.89 25.08 9.17 7.17 5.08 2.33 

GetIP 379.50 15.89 20.58 9.17 7.42 2.00 0.08 

Strip2 209.00 13.60 23.83 16.00 9.67 0.17 0.00 

IPEncap 469.70 17.65 33.50 15.50 3.00 0.17 0.17 

SetIP 208.00 14.34 35.17 19.67 2.17 0.17 0.17 

PrioSche 286.50 8.27 33.67 8.06 6.11 6.11 0.28 

HOME_NODE 
Classifier 319.98 30.02 59.50 8.58 1.19 0.11 0.08 

Strip1 213.90 9.96 26.25 7.83 2.75 1.08 0.33 

CheckIP 695.80 20.31 41.67 12.50 0.08 0.08 0.08 

StripHdr 225.70 10.15 32.58 11.67 1.58 0.08 0.08 

GetIP 386.50 40.60 59.92 17.42 0.83 0.08 0.08 

These statistics are important to us, because it can be 
used for estimating how the variation will affect the 
utilization. In other words, if we pipeline the tasks according 
to the mean only, a packet that takes longer than µ cycles to 
execute will clog the pipeline and cause the utilization to 
decrease in the proceeding processor. Particularly, if we only 
consider the average execution time in task distribution, 32% 
of the packets on average will not finish within the expected 
time and will likely cause performance degradation. In 
Section 5, we analyze the applications and present 
experimental results showing that for an 8 processor NP, this 

8 Different destinations 

DropBroadcast0 

DecIPTTL Discard 

Discard 

DropBroadcast0 

DecIPTTL Discard 

Discard 

DecIPTTL CheckIPHeader Strip(14) 

DecIPTTL CheckIPHeader Strip(14) 

 

StaticIP- 

Lookup 

Discard 

8 Different sources 
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variation can cause up to 23% underutilization of the 
processors.  

We analyze all the applications following the identical 
procedure. Table 3 summarizes the statistical data obtained 
from different elements. For lack of space, we report the data 
for a few representative elements in each application. Note 
that, the mean (µ) and standard deviation (σ) for different 
instances of the same element vary depending on the packet 
contents. Similar to the IPV4Router application, we see a 
large variation in the execution times of the modules for all 
the applications.  

3.2 Aggregate Probability Distribution  
Although we have seen a variation in the execution 

times of individual elements, the variations of different 
modules may cancel each other once they are formed into 
“stages” that will be executed in different processors. For 
example, if element1 and element2 are scheduled in a 
processor and if the execution time of element1 is prolonged 
while the execution time of element2 shortened, the overall 
variation in the execution time of the processor may remain 
constant. Therefore, we also analyzed the variation in the 
aggregate task execution. We divide the complete 
configuration tree into different stages. The boundary 
decision for each stage is made based on the data obtained 
from the probability distribution of individual elements. We 
use the expected execution time of the modules and form n 
stages that are of approximately equal size. Subsequently, we 
perform a probability analysis of packet processing in each 
of these stages. Table 4 presents the probability distribution 
of the IPV4Router application when the processing path is 
divided into 4 stages. Note that, the selection of the number 
of the stages is arbitrary, but we must highlight that the 
results are similar for different number of stages. The results 
indicate that the standard deviation for the aggregate 
elements is similar to the ones of the individual elements. 
Particularly, on average 29% of the packets will cause an 
execution time exceeding the mean. 

Table 4: Probability Distribution of IPV4Router Stages 

Stages Mean(µ) SD(σ) 
Processing time threshold 

µ µ+σ µ+2σ µ+3σ µ+4σ 

Stage0 227.38 24.14 35.06 20.00 3.64 0.00 0.00 

Stage1 691.18 30.48 23.19 14.29 1.86 0.08 0.00 

Stage2 500.43 29.52 27.18 24.31 5.66 0.11 0.11 

Stage3 314.72 20.33 27.78 23.14 7.14 0.28 0.00 

4. Statistical Task Allocation in NPs 
In this section, we describe how the statistical analysis is 

utilized during the assignment of tasks to execution cores 
(i.e., task allocation). The main objective of allocating tasks 
is to maximize the utilization of different execution cores of 
the NP. This, in return, results in an increase in the 
throughput supported by the processor. In the following, we 
first describe our target architecture. Then, we present two 
module distribution schemes. The first assigns the tasks to 

the processors by simply considering the average execution 
time. The second one utilizes the standard deviation in 
addition to the average. If the number of execution cores 
exceeds the number of modules in an application, the 
modules need to be replicated. Section 4.3 describes how 
this replication can be performed effectively by taking 
advantage of the statistical information. 

4.1 Architecture Description  
In this work, we consider a systolic array architecture. In 

this architecture, the execution cores are arranged in a 
pipelined fashion. In other words, processors are logically 
aligned in a single dimension and each processor is 
connected to its left and right neighbors. In addition, for the 
communication patterns, which cannot be satisfied by the 
local links, a shared bus that connects all execution cores is 
utilized. Although generic, this architecture represents most 
of the NP architectures. In this paper, our goal is to develop 
an automated method to distribute the tasks in an application 
uniformly over the cores. Once an execution core performs 
the task allocated to it, it forwards the processed packet as 
well as the necessary data to the next core. 

We exploited pipeline parallelism by mapping a set of 
modular networking tasks to different cores and using an on-
chip network for direct communication between different 
modules. Compared to data parallelism, this approach offers 
reduced latency, reduced buffering, and good locality. It 
does not introduce any extraneous communication, and it 
provides the ability to execute any pair of modules in 
parallel. Most importantly, this approach reduces the load on 
the memory bandwidth (data-parallel implementation puts a 
high load on the memory). Since memory bandwidth is 
expected to be the most important bottleneck in future Chip 
Multiprocessor (CMP) systems, we believe that our 
automated approach will have a wide usage. On the other 
hand, this form of pipelining introduces extra 
synchronization, as all modules need to stay tightly coupled 
in their execution. In addition, effective load balancing is 
critical, as the throughput of the stream graph is equal to the 
minimum throughput across all of the processors. The results 
presented in our work (Section 5) shows that the proposed 
scheme improves utilization of the processing cores and 
improves the performance of the processor.  

4.2 Module Distribution 
In this section, we describe how tasks or modules are 

distributed among execution cores. Note that, each Click 
element represents a conceptually simple computation. A 
module is defined as a subset of Click elements used in an 
application. The Click configuration tree describes the flow 
of the application. When we combine the statistical data of 
individual Click elements along with the Click configuration 
tree, we have a tree structure depicting the estimated delay of 
a single packet processing. The overall flow of the 
processing task can be divided into stages. The objective 
while dividing the application into stages is to form a group 
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of stages with equal expected delay. Note that, in our work, a 
stage and a module are synonymous. From this point onward, 
we would call each stage a module. 

We utilize the average processing time of each element 
to form the modules. Assuming the tasks performed by each 
module is independent of each other; the average delay of 
each module is expected to be the sum of average processing 
time of the Click elements. For a typical networking 
application, any particular packet would traverse one of the 
many alternate routes from start to end. We divide each of 
those paths into equal number of segments. The elements 
used in a particular stage of all the alternative paths form a 
single module. Note that, for a particular packet, only a 
subset of the all the elements in a module would be used.  

 

 

 

 

 

 

 

 

 

Figure 3.  Pseudocode to calculate Total Execution Time 

The overall task distribution algorithm has three stages. 
In the first step, the total execution time of a packet is found. 
In the second step, the stages are formed. In the third step, 
we perform local optimization to improve the task 
distribution.  

The algorithm to calculate the total execution time is 
shown in Figure 3. We assign weights equal to expected 
processing time to each of the modules while traversing the 
whole tree. The expected execution time for each module is 
obtained using the procedure described in Section 3. 

The second step of the algorithm is Basic Task 
Distribution (BTD). The pseudocode of the algorithm is 
presented in Figure 4. BTD represents the baseline algorithm 
for task distribution based on statistical properties. Once this 
step is completed, we perform a local optimization stage 
where all the stage boundaries are considered. If moving an 
element from one stage to the other (the move can be from 
stage i to i+1 or vice versa) reduces the overall variance in 
the total execution times of the stages, then the location of 
the element is changed. We traverse the stages until no 
element can be moved. 

Figure 5 shows BTD scheme results on the IPV4Router 
application. Note that in BTD, we only consider the mean 
execution time of the modules. In other words, for each 
stage, we add the mean execution times of the modules in 
that stage to find the expected execution time of that stage 

The statistical data obtained for each Click element 
shows on average approximately 30% of the data packets 

couldn’t be processed within the mean processing time (µ). 
A slack of the form k*σ in the estimated processing time 
helps a particular element to process a packet within the 
estimated delay. Therefore, instead of forming the stages 
using the mean processing time (µ), we form the stages using 
µ+k*σ as the expected execution time. In other words, the 
weight of each tree node (element) is set to µ+k*σ. This 

scheme is called Extended Task Distribution (ETD). The 
intuition behind ETD is to allow each element an extended 
slack to process a packet. We have performed a number of 
experiments with varying the k value. Our experiments 
reveal that the optimal point across the applications is 
achieved for k = 3. The detailed experiments are described in 
Section 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Pseudocode for Basic Task Distribution (BTD) 

4.3 Selective Module Replication  
It is normal to encounter a situation where the number of 

different modules available in an application is less than the 
number of available execution cores. In such cases, we 
replicate the modules to parallelize the packet processing for 
that particular module. This would reduce the utilization of 
the core that directly contradicts our objective for task 
allocation. However, instead of a naive replication scheme, 
we replicate the modules with the highest mean processing 
times. This replication scheme is called Selective Replication 

(SR). Once we replicate a module, the two new modules are 
assigned a weight equal to the half of the weight of the 
original module. Moreover, we consider an extended slack 
version of the SR technique where we also consider the 
variation while making replication decision. This scheme, 

called Extended Selective Replication (ESR), labels each 
module with µ+k*σ, and performs the replications 
accordingly.  

For a Click Configuration Tree { 
  Current_Node = root element; 
    WeightCurrent_Node = ExecutionTimeroot; 
      While (Current_Node != Leaf Node){ 

For all children of Current_Node { 
   New_Node = Child of Current_Node; 
   WeightNew_Node = Execution_TimeNew_Node+  

WeightCurrent_Node; 
  } 
  Current_Node = New_Node; 

  
} 

} 

Total_Weight = MAX(Leaf Node Weights); 
Stage_Weight = Total_Weight / Number of Stages; 
 
i = 0; // Index for Stage 
FOR a Click Configuration Tree { 
  Current_Node = root element; 
  Add root element to STAGEi ; 
  Add_WeightCurrent_Node = ExecutionTimeroot; 
  
  WHILE (Current_Node != Leaf Node){ 
    For all children of Current_Node { 
       New_Node = Child of Current_Node; 
       Add_WeightNew_Node = Execution_TimeNew_Node+  

             WeightCurrent_Node; 
       IF (Add_WeightNew_Node < STAGE_WEIGHT) { 
 Add current module to STAGEi ; 
           } 
       ELSE { 
  Add_WeightNew_Node= Execution_TimeNew_Node; 
 i = i + 1; 
 Add element to STAGEi ; 
            } 
       Current_Node = New_Node;  
      } 
   } 
} 

 

72



 

Figure 5. Illustration of module distribution in IPV4Router application 

4.4 Discussion  
We must note that our overall algorithm is based on 

profiling information. In general, the success of a profiling 
scheme is largely dependent on the correct selection of the 
input data sets. However, our experience with the networking 
applications studied in this paper shows that they exhibit 
very similar behavior even with different input packet traces. 
Particularly, we have tested the four applications using three 
different sets of packets from the NLANR traces. For the 
three input sets, the mean execution times and the standard 
deviation for the four applications varied by less than 3%. 
On the other hand, our experiments show that the behavior of 
the applications was very much dependant on the “internal” 
data structures. For example, a change in the routing table 
structures used in IPV4Router application has a significant 
impact on the mean execution time of a number of elements. 
Therefore, to achieve effective task distribution, a user needs 
to carefully select the internal structures that will represent 
the working conditions of an application.  

5. Experiments  

5.1 Experimental Setup 
The SimpleScalar/ARM version 3.0 simulator [2] is 

used to evaluate the proposed techniques. We modified the 
processor configuration to model a processor similar to 
execution cores in a variety of NP architectures. We 
compiled the Click router to run in the user level mode. It is 
modified to run in collaboration with the SimpleScalar 
simulator. The SimpleScalar simulator is modified to record 
the behavior of every packet within a configuration. With the 
use of marker elements within the configuration, we track the 
every packet within a click configuration and record the 
performance of Click elements processing the packets. We 

simulate four representative networking applications as 
discussed in Section 3.  

We perform two sets of experiments. First, we analyze 
the proposed task allocation scheme from the throughput 
perspective. Particularly, we measure the throughput for 
increasing number of processors. In the second set of 
experiments, we study the effectiveness of the proposed 
optimizations on the task allocation. We measure the 
resource (i.e., processor) utilization of the studied 
applications with BTD, ETD, SR, and ESR schemes.  

5.2 Throughput Analysis 
To evaluate the benefits of the proposed schemes, we 

compared the relative system throughput of multi-core 
processors while allocating task using our proposed schemes. 
The baseline configuration for these experiments is a 
configuration where the entire application is run in a single 
core. Next, we recorded the execution time for each of the 
benchmark applications when tasks are distributed among 
different cores using proposed schemes. While using 
multiple cores we have included a 2% performance penalty 
to account for synchronization. This section presents a 
comparison based on system throughput.  

We must note that pipeline parallelism in general is 
beneficial for data-intensive applications, because compared 
to data-level parallelism, it reduces the contention on shared 
resources.  In fact, we have compared our base task 
distribution scheme (BTD) with a programming scheme 
where all the cores are executing the full application.  Our 
results indicate that for a 4-core system running the Route 
application, the throughput of BTD is 35.8% higher than the 
throughput achieved with replicating the code on each core 
(which is currently the most common method for 
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programming Network Processors).  Our ESR scheme, on 
the other hand, performs 42.2% better than this approach.  
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Figure 6. Processor throughput for DRR application 
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Figure 7. Processor throughput for RED application 
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Figure 8. Processor throughput for Home_Node application 
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Figure 9. Processor throughput in Route application 

Figures 6 through 9 describe the relative system 
throughput of different configurations for the experimental 
applications. The figures present the results for 4 variations 
as described in Section 5: Base Task Distribution (BTD), 
Extended Task Distribution (ETD), Selective Replication 
(SR), and Extended Selective Replication (ESR). Note that 
the distribution of stages in SR is based on BTD and ESR 
uses ETD strategy to place the modules into processor cores.  

As described in Sections 5.2 and 5.3, ESR and ETD 
schemes use µ+k*σ as the expected processing time. 
Therefore, we need to select a k value. Our tests with 
different k values showed that k=3 gives the best results 
overall. For small k values, the stages for ESR and ETD 
were identical to those of SR and BTD, respectively. For 
larger k values, on the other hand, the elements with large 
variance were assigned to single cores (e.g., stages formed 
by only such elements). If the execution time for a packet is 
close to or smaller than the mean processing time, this 
particular core is underutilized, reducing overall utilization. 
The optimal point is achieved when both the producer and 
the consumer are utilized fully. The selection of k=3 is the 
closest case to this scenario.  

We have evaluated four proposed schemes in our study. 
BTD is the simplest scheme based on statistical properties of 
the packet execution. The other three schemes ETD, SR and 
ESR employ additional statistical properties like variation 
while allocating task among cores. Subsequently, we observe 
performance enhancement in the system due to intelligent 
task allocation. 

Figures 6 through 9 present relative performances 
achieved with respect to single core execution of the original 
application after applying the proposed schemes. We see that 
task distribution is highly scalable for all the schemes. On 
average, for 2, 4, and 8 processors, BTD scheme achieves a 
relative throughput of 1.78, 3.25, and 6.15, respectively. The 
best throughput improvement is observed for DRR 
application. The reason for this behavior lies in the unique 
nature of this application. DRR contains two elements with 
large execution times. Hence, we can achieve close to perfect 
task distribution for two processors. With SR schemes, the 
relative throughput for 2, 4, and 8 processors are 1.84, 3.40, 
and 6.42, respectively. For all the applications, we can see 
that SR performs better than BTD scheme. Due to replication 
of the processing elements that takes longer time, SR scheme 
improves the overall utilization of the processing cores. We 
can notice the improvement for higher number of cores (4 or 
8) as that allows us for intelligent allocation of resources. 
The best performance is observed for the IPv4Router 
application. It has a relative throughput of 6.55 for 8 
processors. As shown in Table 2, the IPv4Router application 
has a large variation of processing time for different 
elements. This variation gets benefited by the SR scheme to 
have even processing time for each pipelined stage and 
subsequently resulting high throughput scalability.  

The extended version of BTD and SR includes an extra 
slack of 3σ to the expected processing time of the elements 
while task allocation. As shown in the figures, this results in 
a throughput improvement for almost all the cases. The 
extended schemes perform particularly well for the RED 
application. For ESR, the best performance is observed for 
the 8-core configuration, when the throughput reaches 7, a 
12.5% improvement over BTD. The reason for this 
improvement lies in the nature of this application. RED 
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consists of a number of elements with mean processing times 
close to each other. Therefore, by considering the standard 
deviation in the execution times, we see that the stage 
formations can be significantly changed. For other 
applications that are dominated by a few elements, 
consideration of the extended processing times usually does 
not cause a significant change in the stage formation. This is 
especially true for the DRR application, where the majority 
of the processing time is dominated by two modules. 
Moreover, ETD scheme always improves the throughput for 
8 processor configurations. On average, for all four 
applications, it improves the throughput by 4.4%. On the 
other hand, the ESR scheme achieves a relative throughput 
of 1.90, 3.49, 6.74 for 2, 4, and 8 core processors, 
respectively, aggregated over all four applications. 
Henceforth, the combination of Selective Replication and 
Extended Slack results significant throughput improvement. 
On average, it improves the throughput by 6.4%, 8.4%, and 
9.9% for 2, 4, and 8 processors as compared to the BTD 
scheme. We must note that the overall performance 
improvement achieved by our proposed schemes is 
synergistic. While the consideration of variance (ETD) and 
replication (SR) improve the performance by 4.4% and 
4.3%, respectively, their combination (ESR) provides 9.9% 
improvement. 

5.3 Resource Utilization Analysis 
In the second set of experiments, we measure the 

average utilization of the cores. Figure 10 describes the mean 
utilization percentage of the cores for the DRR application. 
The figure presents the results for 4 variations as described 
in Section 5: the Base Task Distribution (BTD), the 
Extended Task Distribution (ETD), the Selective Replication 
(SR), and the Extended Selective Replication (ESR). The 
other applications follow the similar trends. 
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Figure 10. Resource Utilization in DRR application 

For almost all the applications, we see that the ESR 
scheme gives the best utilization. In general, we see that both 
of our optimizations  increase the utilization. Particularly, SR 
almost always performs better than the BTD. A larger 
number of elements are useful for achieving a higher 
utilization. With the larger number of elements, we can form 
stages that are close to each other in the execution times. The 
only exception to this rule is the DRR application executed 
on 2 cores. For this application, SR and BTD provide the 
same throughput. The reason for this behavior lies in the 

unique property of the DRR application. DRR contains two 
elements with large execution times. Hence, without 
replication, we can achieve close to perfect task distribution. 
Particularly, DRR achieves the best utilization for 2-core 
processor with 95%, which cannot be improved with the SR 
scheme. In addition, we see that the ETD and ESR schemes 
always perform better than the BTD and SR schemes, 
respectively. We observe a similar trend for the remaining 
three applications. Overall, the ESR scheme achieves the 
best utilization with 95%, 89%, and 84% on average for the 
processors with 2, 4, and 8 cores, respectively, aggregated 
over all four applications. The average utilization for the 
BTD scheme, on the other hand, is 88%, 81%, and 77% for 
the processors with 2, 4, and 8 cores, respectively.  

6. Related Work 
Task allocation has been an active research area in a 

number of domains. In behavioral synthesis research, the 
objective is to assign operations to hardware and optimize 
the usage of storage and communication paths [6]. While 
analogous to the problem faced here, these approaches are 
best suited for synthesizing datapath elements for small 
computational kernels. In the multiprocessor domain, 
Chekuri et al. [3] and Shachnai [20] proposed approximation 
algorithms to solve the problem for general multiprocessor 
models. However, they fail to consider practical resource 
constraints.  

We have used Click infrastructure which is the most 
relevant and established academic C++ programming model 
and environment for building packet processing applications 
on a single, general-purpose, processor. Shangri-La [4] is a 
work that matches our interest pretty closely. Shangri-La is 
based on Baker [24] that bears many similarities to Click, 
especially in regards to its modeling of communication 
channels (CCs). However, the optimizations presented in 
their scheme do not consider the variations observed in the 
packet execution. Due to architectural and technology 
differences, it is difficult to make any performance 
comparison between our system and theirs. Gordon et. al. [7] 
proposed schemes that employs task distribution among 
different cores similar to ours. The novelty of our scheme 
lies on the fact that the task distribution is based on the 
statistical. 

Plishker [16] exploited the flexible framework of ILP to 
generate optimal solutions to the mapping problem. Such 
techniques are usually computationally expensive. Srinivasan 
et al. [22] considered the scheduling problem for the Intel 
IXP1200 and presented a theoretical framework in order to 
provide service guarantees to applications. However, their 
methodology was not tested with real network applications.  

A number of programming environments were proposed 
for NPs. NP-Click [21] is an extended programming model 
based on Click Router. It is implemented on the Intel 
IXP1200 architecture. Memik and Mangione-Smith [14] 
proposed a programming environment that considers the task 
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allocation. However, none of these techniques used the 
variation in execution time to optimize the allocation 
schemes. Datar and Franklin [5] proposed greedy-pipe 
algorithm to solve problems associated with determining 
optimal application task assignments for pipelines in CMP 
based NP. However, their study is performance oriented and 
the execution core utilization has not done by them.  

7. Conclusions  
In this paper, we have presented a method for allocating 

tasks in Network Processors. Our task allocation scheme 
utilized the modular nature of networking applications. 
Variation in execution time is an inherent property of 
processing. The goal is to estimate this variation for different 
parts of the code and perform the task allocation accordingly. 
We present two task allocation schemes. The first one (SR) 
simply replicates the modules based on their execution time, 
whereas the second one (ESR) considers the variation in 
execution time of the modules when making replication 
decisions. Results reveal several important characteristics of 
our proposed schemes. First, they show that the base task 
distribution scheme achieves high levels of scalability. In 
addition, the extended processing time and replication 
scheme help to improve the performance. In particular, the 
consideration of variance (ETD) and replication (SR) 
improve the performance by 4.4% and 4.3%, respectively. 
The combination of the extended processing time and the 
selective replication (ESR) improves the performance of the 
base scheme by 9.9% on average for the processor with 8 
cores. It achieves an average utilization of 95%, 89%, and 
84% for the processors with 2, 4, and 8 cores, respectively. 
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