
Automated Task Distribution in Multicore Network
Processors using Statistical Analysis

Arindam Mallik

Northwestern University
arindam@ece.northwestern.edu

Yu Zhang

Northwestern University
yzh702@ece.northwestern.edu

Gokhan Memik

Northwestern University
memik@ece.northwestern.edu

ABSTRACT

Chip multiprocessor designs are the most common types of

architectures seen in Network Processors. As the Network

Processors are used to implement increasingly complicated

applications, task distribution among the cores is becoming

an important problem. In this paper, we propose a new task

allocation scheme for such architectures. This scheme relies

on the inherent modular nature of the networking

applications and intelligently distributes modules among

different execution cores. Additionally, we selectively

replicate modules to parallelize execution of tasks having

longer processing time. We have developed a technique that

uses the probability distribution of the execution times of

different modules in the networking applications. The

proposed schemes result in resource utilization of up to

95%, 89%, and 84% on average for the processors with 2, 4,

and 8 cores, respectively. The schemes are highly scalable

and can improve the throughput by 6.72 times for 8 core

processors, aggregated over four representative

applications. The combination of selective replication of

modules and variation-aware task allocation result in up to

12.5% (9.9% on average) performance improvement as

compared to a scheme based on just mean processing time.
1

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design – Packet-switching networks.

General Terms
Algorithms, Performance

1. Introduction
A Network Processor (NP) is an Application Specific

Instruction Processor (ASIP) for the networking application
domain – a software programmable device with architectural
features and/or special circuitry for packet processing. The
ever-increasing complexity of the networking applications
demands evolution of a class of processors, which are fully
dedicated for such applications. Furthermore, customer
innovation demands the ability to perform detailed

1Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’07, December 3–4, 2007, Orlando, Florida, USA.
Copyright 2007 ACM 978-1-59593-945-6/07/0012...$5.00.

inspection on each packet and even to make routing
decisions based upon content.

Traditionally, networking equipment manufacturers
have been forced to develop ASICs due to the high
performance requirements of the high-speed links. The
classical networking challenge is to maintain stability while
maximizing throughput and minimizing latency for the
worst-case traffic. Such a scenario has presented the circuit
designers with the huge opportunity to develop a new class
of processors–the Network Processors (NPs). As suggested
by the industry watchers [25], a steady rise in demand for
application specific hardware for networking applications
would drive the research for innovative technologies in
network processor architectures.

Although NP architectures vary significantly in their
design styles (c.f., Table 1), Chip Multiprocessor (CMP) is
arguably the most common architectural method: most
designs including Intel IXP architectures [8-10] , Cisco
Toaster [13] and Freescale C-5 [15] follow the CMP style.
The reason for this selection lies in the nature of the
networking applications. Most networking applications
exhibit high data and task level parallelism, whereas the
instruction level parallelism is relatively limited. In addition,
most applications are relatively simple. Therefore, designers
utilize several simple execution cores that can take
advantage of the data/task level parallelism without
complicating the design process.

One of the most important bottlenecks for CMP
processors in general, and particularly the NP architectures,
is the low scalability of the interconnect networks. Although
increasing the number of cores in the processor is desirable
to take advantage of the parallelism in the application,
developing an interconnect network to achieve efficient
communication among cores becomes complicated as the
number of nodes is increased. Therefore, with the next
generation NP architectures, we are seeing an increased
emphasis on local communication. For example, the Intel
IXP 28xx [8, 10] architectures utilize neighbor-to-neighbor
links in addition to the global communication structures. In
such architectures, the utilization of the local communication
links is arguably the most important factor in determining the
performance of the application. With the increasing link
speeds and the changes in the target applications, it is
expected that the number of execution cores in the
processors will increase. Therefore, high utilization of local
communication links will become an obligation to achieve

67

the desired scalability in next-generation NPs. Clearly, the
key factor that determines the communication behavior is the
task distribution. In most of the existing architectures, this
task is left to the user. With the increasing complexity of the
architectures, this expectation from the user becomes
limiting and an automated task distribution scheme is highly
desirable. In this paper, we propose a solution to this
problem. Particularly, we present an automated task
allocation scheme for NPs. We utilize the modular nature
observed in majority of networking applications. First, we
divide the applications into modules similar to CLICK [12]
and NP-Click [21] environments. Then, we profile the
applications using a representative workload and perform a
statistical analysis on the behavior of different modules in
the application. This analysis provides us with the
distribution of the execution times of different modules.
Then, we utilize this probability distribution information to
allocate tasks among different execution cores of the NPs. In
addition to utilizing this information to decide on task
distribution, we also make decisions about which modules
should be replicated based on the analysis. Specifically, our
contributions in this paper are as follows:

• We analyze the probability distribution of packet
processing elements in modular networking
applications,

• We present an intelligent methodology to allocate tasks
among different processor cores of a chip
multiprocessor, and

• We show experimental results investigating the impact
of our task allocation scheme and compare it to
alternatives.

Our main goal is to reduce the effect of the variation in
the execution times of the packets. To be more precise, we
would like to schedule the tasks such that the effects of
variation will be minimized. The variation in the execution
times is an inherent property of computing. This is
particularly true for CMPs, where different cores are
competing for a set of global resources (e.g., shared bus or
the shared memory). In addition, there is data-dependent
variation, i.e., depending on the particular input the
execution time may vary. For example, a loop might be
executed for different number of iterations based on the input
data. This uncertainty is even more pressing if the cores
implement multithreading (as commonly done for most NP
architectures). The order in which the threads are selected
and the order of the packet arrival are likely to have a
significant impact on the time of completion for a single
thread. This inherent variation in execution time is an
important reason for the complexity of task distribution.

2. Modularity in Network Applications
The Network Processor (NP) designers utilize two

important properties of networking applications. First, these
applications consume and produce well-defined data
segments (network packets). This property leads the
designers to utilize intelligent memory controllers

specifically designed to move packet data to/from and within
the processor. Secondly, for many of the networking
applications, though not all, these packets can be processed
independently. Therefore, there is a large amount of data
level parallelism available in the applications. The designers
take advantage of this fact with the use of multithreading and
with multiple execution cores. Almost all of the NPs use a
variation of multithreading and have several execution cores.
Table 1 presents some characteristics of the representative
NPs, i.e. the number of execution cores and the parallelism
technique (data or instruction level parallelism) employed in
these processors. Another important property of these
applications that is mostly overlooked is their modular
nature. Most of the networking applications implement a set
of tasks that have to be performed on each packet. In many
cases, these tasks are defined by international standardization
organizations. Hence, it is easier for a designer to visualize
the application as a set of tasks (or modules) instead of a
traditional program implemented in a high-level program
such as C. In this work, we develop techniques that take
advantage of this modular nature of the networking
applications.

Table 1. Important characteristics of representative Network

Processor Designs: exec. cores is the number of execution cores,

and parallelism technique is the technique(s) used for task or

instruction level parallelism (MT: Multi-Threading, VLIW:

Very-Long Instruction Word) in the execution cores

Processor # of cores Parallelism

technique
Agere PayloadPlus 3 MT, VLIW

AMMC (MMC) nP7250 2 MT

Bay Microsystems Chespeake 2 MT

Broadcom BCM-1250 2 Superscalar

Cavium Octeon 16 MT

Cisco Toaster 16 VLIW

EZChip ~40 MT

Freescale C-5 16 MT

Hifn 5NP4G 16 MT

Intel IXP2800 16 MT

Intel IXP1200 6 MT

PMC-Sierra RM9000 2 Superscalar

Vitesse (Sitera) IQ1200 4 MT

Wintegra WinPath2 6 MT

Xelerated Xelerator X11 360 VLIW, MT

Another important aspect that needs to be highlighted is
the trend in the NP architectures. Each new NP generation
employs more execution cores than their predecessors.
Therefore, traditional communication structures between
these execution cores (global buses or cross-bar based
fabrics) become less effective. Many of the newer NPs
employ special neighbor-to-neighbor communication
(systolic array) or enhanced interconnection networks to
reduce the need for accessing global structures. In such
systems, effective task allocation becomes particularly hard
even for the most experienced programmers.

68

In the past, modular routers have gained much focus due
to their ease of designing. CLICK [12] and Baker [24] are
examples of domain specific languages designed for
describing networking applications. We design our
framework based on the CLICK framework. CLICK is a
flexible, software modular architecture, which can build
routers from fine-grained components. Each of these
components, known as element, performs a simple task, such
as decrementing an IP packet’s time-to-live (TTL) or IP
header checking. They can easily be extended to do
complicated tasks (IP lookup, NAT). To build a router
configuration, the user chooses a collection of elements and
connects them into a directed flow graph. The nodes being
elements, the connections between those elements represent
a forwarding path. Click configuration scripts are written in a
simple language with two important constructs: declarations
create elements, and connections say how they should be
connected.

Figure 1. Click configuration for TTL decrement

The Click language is wholly declarative. It specifies
what elements to create and how they should be connected,
not how to process packets procedurally. Router
manipulation tools can take advantage of these properties to
optimize router configurations offline or prove simple
properties about them. The main goals behind the Click
language are usability and extensibility. Figure 1 shows a
Click diagram of a simple configuration that checks the TTL
value of a packet. It forwards the packet if the TTL value is
non-negative. Otherwise, the packet is discarded.

NP-Click [21] is an extended programming model based
on Click Router and implemented on the Intel IXP1200. It is
a combination of an efficient abstraction of the NP with
features of a domain-specific language for networking. The
result is a natural abstraction that enables programmers to
quickly write efficient code. It facilitates the difficulties of
programming NPs by taking advantage of hardware
parallelism, arbitration of shared resources, and efficient data
layout. Our optimizations are based on this type of a
programming language and can be readily applied to them.

3. Applications
We explore the effectiveness of our task allocation

techniques by using it to schedule four representative
networking applications. This section describes these
applications.

IPV4Router: We implement the data plane of an 8 port
Fast Ethernet IP Version 4 router [1]. This application is
based on the NP benchmark specified by Tsai et al. [23]. A
packet arriving on port P is to be examined and forwarded on
a different port P’. We use a static lookup table to decide the
next-hop location. It is determined through a longest prefix
match (LPM) on the IPv4 destination address field. The
packet header and payload are checked for validity and
packet header fields’ checksum and TTL are updated. Figure
2 shows the Click configuration tree of this application.

DRR: We extend the IP router demonstrated in the Click
Modular Router project. The router that forwards unicast
packets in nearly full compliance with the standards [1, 17,
18]. We introduce a queue which introduces packet by
pulling from a set of infinite packet source using deficit
round robin (drr) scheduling [19].

RED: Random early detection is more likely to drop
packets when there is network congestion; when there are
many packets in the queue servicing that link. The RED
element therefore queries router queue lengths when
deciding whether to drop a packet.

For this application, we extend the Click IP router to
handle specialized routing tasks. Particularly, a complex IP
router performs the following tasks: two parallel T1 links to
a backbone, between which traffic should be load balanced;
division of traffic into two priority levels; fairness among the
connections within each priority level; and RED dropping
driven by the total number of packets queued. Click's
modular scheduling, queuing and dropping policy elements
are used in this application.

HOME_NODE: This application imitates an active
home node in a network. The home node proxy-ARPs for the
mobile node, decapsulates packets from the remote node,
sending them onto the local network, and perform IP
encapsulation for packets destined for the mobile node. It
also ensures that packets generated by the address 1.0.0.10
are properly encapsulated.

3.1 Probability Distribution of Packets
In this section, we discuss the probability distribution of

the packet processing time in a Click modular application.
For the sake of conciseness, we describe the results for only
the IPV4Router application in detail. The IPV4Router
application consists of 33 Click elements. It has five
different basic elements – Strip, CheckIPHeader,

StaticIPLookup, DropBroadcast, DecIPTTL [11].

Figure 2 shows a graphical representation of the Click
description of the router and the relation between the basic
elements (i.e., modules). The rest of the applications are
analyzed in the same fashion and their results are
summarized at the end of this section in Table 3. The
simulation environment used to gather the statistics is
described in Section 5.1.

FromDevice(eth0)

DecIPTTL ToDevice(eth1)

Discard

69

Figure 2. Click configuration tree for the IPV4Router application

Table 2 : Probability Distribution of IPV4Router Elements and

the fraction of packets that have execution times exceeding

µ+k*σ

Mean

(µ)

SD

(σ)

Processing time threshold

µ µ+σ µ+2σ µ+3σ µ+4σ

strip0 241.28 29.31 50.00 0.64 0.64 0.64 0.00

strip1 232.00 22.11 34.19 33.33 0.00 0.00 0.00

strip2 220.18 25.24 31.81 25.00 0.00 0.00 0.00

strip3 216.05 19.87 35.06 20.00 3.63 0.00 0.00

chkip0 713.01 59.77 50.00 0.64 0.64 0.64 0.64

chkip1 695.22 31.48 34.63 33.33 0.86 0.43 0.00

chkip2 695.49 25.09 27.59 25.00 0.97 0.00 0.00

chkip3 694.63 21.77 20.00 20.00 2.33 0.00 0.00

RtLkUp 336.56 266.88 20.03 20.03 10.01 0.03 0.03

DBC0 212.30 21.18 34.32 28.57 1.29 0.18 0.18

DBC1 197.42 18.51 51.29 26.94 25.00 0.64 0.00

DBC2 210.45 26.50 18.39 2.16 0.00 0.00 0.00

DBC3 205.47 17.40 32.83 14.28 14.28 0.00 0.00

DcTTL0 317.78 20.34 26.45 12.98 2.09 0.00 0.00

DcTTL1 320.33 21.10 35.71 26.62 0.00 0.00 0.00

DcTTL2 315.96 19.6 20.99 17.09 1.29 0.00 0.00

DcTTL3 314.77 18.26 19.85 14.28 0.55 0.00 0.00

We execute the configuration for 5000 packets. During
this execution, we record the amount of time spent by each
packet in different elements of the Click router. Using these
statistics, we find the mean and the standard deviation of the
execution times. Table 2 presents the results for the 17
representative elements along with their execution times in
the configuration. Once we extract the mean (µ) and the
standard deviation (σ) of processing time by each of the
element, we compare them against the data recorded for each
packet traversed through it. The four right-most columns in
the Table 2 present the percentage of packets that couldn’t
be processed within the slack given by the expression (µ +
k*σ), where k is a positive constant.

Table 3: Probability Distribution of Application Elements

 Mean(µ) SD(σ)
Processing time threshold

µ µ+σ µ+2σ µ+3σ µ+4σ

DRR
Cl1 351.20 24.13 55.35 9.81 0.88 0.13 0.13

DRRelem 17032.70 76778.25 45.23 0.13 0.13 0.13 0.13

IPCheck 31.66 38.14 13.82 0.25 0.25 0.25 0.00

RtLkUp 349.70 220.44 22.86 22.86 0.63 0.13 0.13

ChkPnt 19552.00 46879.27 7.64 7.64 7.64 7.64 0.33

FixIP 219.20 14.64 34.83 25.87 0.00 0.00 0.00

Frag 183.94 18.11 53.23 23.38 4.48 0.00 0.00

RED
RED 834.80 142.74 39.33 6.78 6.61 5.72 0.06

StripHdr 204.00 9.89 25.08 9.17 7.17 5.08 2.33

GetIP 379.50 15.89 20.58 9.17 7.42 2.00 0.08

Strip2 209.00 13.60 23.83 16.00 9.67 0.17 0.00

IPEncap 469.70 17.65 33.50 15.50 3.00 0.17 0.17

SetIP 208.00 14.34 35.17 19.67 2.17 0.17 0.17

PrioSche 286.50 8.27 33.67 8.06 6.11 6.11 0.28

HOME_NODE
Classifier 319.98 30.02 59.50 8.58 1.19 0.11 0.08

Strip1 213.90 9.96 26.25 7.83 2.75 1.08 0.33

CheckIP 695.80 20.31 41.67 12.50 0.08 0.08 0.08

StripHdr 225.70 10.15 32.58 11.67 1.58 0.08 0.08

GetIP 386.50 40.60 59.92 17.42 0.83 0.08 0.08

These statistics are important to us, because it can be
used for estimating how the variation will affect the
utilization. In other words, if we pipeline the tasks according
to the mean only, a packet that takes longer than µ cycles to
execute will clog the pipeline and cause the utilization to
decrease in the proceeding processor. Particularly, if we only
consider the average execution time in task distribution, 32%
of the packets on average will not finish within the expected
time and will likely cause performance degradation. In
Section 5, we analyze the applications and present
experimental results showing that for an 8 processor NP, this

8 Different destinations

DropBroadcast0

DecIPTTL Discard

Discard

DropBroadcast0

DecIPTTL Discard

Discard

DecIPTTL CheckIPHeader Strip(14)

DecIPTTL CheckIPHeader Strip(14)

StaticIP-

Lookup

Discard

8 Different sources

70

variation can cause up to 23% underutilization of the
processors.

We analyze all the applications following the identical
procedure. Table 3 summarizes the statistical data obtained
from different elements. For lack of space, we report the data
for a few representative elements in each application. Note
that, the mean (µ) and standard deviation (σ) for different
instances of the same element vary depending on the packet
contents. Similar to the IPV4Router application, we see a
large variation in the execution times of the modules for all
the applications.

3.2 Aggregate Probability Distribution
Although we have seen a variation in the execution

times of individual elements, the variations of different
modules may cancel each other once they are formed into
“stages” that will be executed in different processors. For
example, if element1 and element2 are scheduled in a
processor and if the execution time of element1 is prolonged
while the execution time of element2 shortened, the overall
variation in the execution time of the processor may remain
constant. Therefore, we also analyzed the variation in the
aggregate task execution. We divide the complete
configuration tree into different stages. The boundary
decision for each stage is made based on the data obtained
from the probability distribution of individual elements. We
use the expected execution time of the modules and form n
stages that are of approximately equal size. Subsequently, we
perform a probability analysis of packet processing in each
of these stages. Table 4 presents the probability distribution
of the IPV4Router application when the processing path is
divided into 4 stages. Note that, the selection of the number
of the stages is arbitrary, but we must highlight that the
results are similar for different number of stages. The results
indicate that the standard deviation for the aggregate
elements is similar to the ones of the individual elements.
Particularly, on average 29% of the packets will cause an
execution time exceeding the mean.

Table 4: Probability Distribution of IPV4Router Stages

Stages Mean(µ) SD(σ)
Processing time threshold

µ µ+σ µ+2σ µ+3σ µ+4σ

Stage0 227.38 24.14 35.06 20.00 3.64 0.00 0.00

Stage1 691.18 30.48 23.19 14.29 1.86 0.08 0.00

Stage2 500.43 29.52 27.18 24.31 5.66 0.11 0.11

Stage3 314.72 20.33 27.78 23.14 7.14 0.28 0.00

4. Statistical Task Allocation in NPs
In this section, we describe how the statistical analysis is

utilized during the assignment of tasks to execution cores
(i.e., task allocation). The main objective of allocating tasks
is to maximize the utilization of different execution cores of
the NP. This, in return, results in an increase in the
throughput supported by the processor. In the following, we
first describe our target architecture. Then, we present two
module distribution schemes. The first assigns the tasks to

the processors by simply considering the average execution
time. The second one utilizes the standard deviation in
addition to the average. If the number of execution cores
exceeds the number of modules in an application, the
modules need to be replicated. Section 4.3 describes how
this replication can be performed effectively by taking
advantage of the statistical information.

4.1 Architecture Description
In this work, we consider a systolic array architecture. In

this architecture, the execution cores are arranged in a
pipelined fashion. In other words, processors are logically
aligned in a single dimension and each processor is
connected to its left and right neighbors. In addition, for the
communication patterns, which cannot be satisfied by the
local links, a shared bus that connects all execution cores is
utilized. Although generic, this architecture represents most
of the NP architectures. In this paper, our goal is to develop
an automated method to distribute the tasks in an application
uniformly over the cores. Once an execution core performs
the task allocated to it, it forwards the processed packet as
well as the necessary data to the next core.

We exploited pipeline parallelism by mapping a set of
modular networking tasks to different cores and using an on-
chip network for direct communication between different
modules. Compared to data parallelism, this approach offers
reduced latency, reduced buffering, and good locality. It
does not introduce any extraneous communication, and it
provides the ability to execute any pair of modules in
parallel. Most importantly, this approach reduces the load on
the memory bandwidth (data-parallel implementation puts a
high load on the memory). Since memory bandwidth is
expected to be the most important bottleneck in future Chip
Multiprocessor (CMP) systems, we believe that our
automated approach will have a wide usage. On the other
hand, this form of pipelining introduces extra
synchronization, as all modules need to stay tightly coupled
in their execution. In addition, effective load balancing is
critical, as the throughput of the stream graph is equal to the
minimum throughput across all of the processors. The results
presented in our work (Section 5) shows that the proposed
scheme improves utilization of the processing cores and
improves the performance of the processor.

4.2 Module Distribution
In this section, we describe how tasks or modules are

distributed among execution cores. Note that, each Click
element represents a conceptually simple computation. A
module is defined as a subset of Click elements used in an
application. The Click configuration tree describes the flow
of the application. When we combine the statistical data of
individual Click elements along with the Click configuration
tree, we have a tree structure depicting the estimated delay of
a single packet processing. The overall flow of the
processing task can be divided into stages. The objective
while dividing the application into stages is to form a group

71

of stages with equal expected delay. Note that, in our work, a
stage and a module are synonymous. From this point onward,
we would call each stage a module.

We utilize the average processing time of each element
to form the modules. Assuming the tasks performed by each
module is independent of each other; the average delay of
each module is expected to be the sum of average processing
time of the Click elements. For a typical networking
application, any particular packet would traverse one of the
many alternate routes from start to end. We divide each of
those paths into equal number of segments. The elements
used in a particular stage of all the alternative paths form a
single module. Note that, for a particular packet, only a
subset of the all the elements in a module would be used.

Figure 3. Pseudocode to calculate Total Execution Time

The overall task distribution algorithm has three stages.
In the first step, the total execution time of a packet is found.
In the second step, the stages are formed. In the third step,
we perform local optimization to improve the task
distribution.

The algorithm to calculate the total execution time is
shown in Figure 3. We assign weights equal to expected
processing time to each of the modules while traversing the
whole tree. The expected execution time for each module is
obtained using the procedure described in Section 3.

The second step of the algorithm is Basic Task
Distribution (BTD). The pseudocode of the algorithm is
presented in Figure 4. BTD represents the baseline algorithm
for task distribution based on statistical properties. Once this
step is completed, we perform a local optimization stage
where all the stage boundaries are considered. If moving an
element from one stage to the other (the move can be from
stage i to i+1 or vice versa) reduces the overall variance in
the total execution times of the stages, then the location of
the element is changed. We traverse the stages until no
element can be moved.

Figure 5 shows BTD scheme results on the IPV4Router
application. Note that in BTD, we only consider the mean
execution time of the modules. In other words, for each
stage, we add the mean execution times of the modules in
that stage to find the expected execution time of that stage

The statistical data obtained for each Click element
shows on average approximately 30% of the data packets

couldn’t be processed within the mean processing time (µ).
A slack of the form k*σ in the estimated processing time
helps a particular element to process a packet within the
estimated delay. Therefore, instead of forming the stages
using the mean processing time (µ), we form the stages using
µ+k*σ as the expected execution time. In other words, the
weight of each tree node (element) is set to µ+k*σ. This

scheme is called Extended Task Distribution (ETD). The
intuition behind ETD is to allow each element an extended
slack to process a packet. We have performed a number of
experiments with varying the k value. Our experiments
reveal that the optimal point across the applications is
achieved for k = 3. The detailed experiments are described in
Section 5.

Figure 4. Pseudocode for Basic Task Distribution (BTD)

4.3 Selective Module Replication
It is normal to encounter a situation where the number of

different modules available in an application is less than the
number of available execution cores. In such cases, we
replicate the modules to parallelize the packet processing for
that particular module. This would reduce the utilization of
the core that directly contradicts our objective for task
allocation. However, instead of a naive replication scheme,
we replicate the modules with the highest mean processing
times. This replication scheme is called Selective Replication

(SR). Once we replicate a module, the two new modules are
assigned a weight equal to the half of the weight of the
original module. Moreover, we consider an extended slack
version of the SR technique where we also consider the
variation while making replication decision. This scheme,

called Extended Selective Replication (ESR), labels each
module with µ+k*σ, and performs the replications
accordingly.

For a Click Configuration Tree {
 Current_Node = root element;
 WeightCurrent_Node = ExecutionTimeroot;
 While (Current_Node != Leaf Node){

For all children of Current_Node {
 New_Node = Child of Current_Node;
 WeightNew_Node = Execution_TimeNew_Node+

WeightCurrent_Node;
 }
 Current_Node = New_Node;

}

}

Total_Weight = MAX(Leaf Node Weights);
Stage_Weight = Total_Weight / Number of Stages;

i = 0; // Index for Stage
FOR a Click Configuration Tree {
 Current_Node = root element;
 Add root element to STAGEi ;
 Add_WeightCurrent_Node = ExecutionTimeroot;

 WHILE (Current_Node != Leaf Node){
 For all children of Current_Node {
 New_Node = Child of Current_Node;
 Add_WeightNew_Node = Execution_TimeNew_Node+

 WeightCurrent_Node;
 IF (Add_WeightNew_Node < STAGE_WEIGHT) {
 Add current module to STAGEi ;
 }
 ELSE {
 Add_WeightNew_Node= Execution_TimeNew_Node;
 i = i + 1;
 Add element to STAGEi ;
 }
 Current_Node = New_Node;
 }
 }
}

72

Figure 5. Illustration of module distribution in IPV4Router application

4.4 Discussion
We must note that our overall algorithm is based on

profiling information. In general, the success of a profiling
scheme is largely dependent on the correct selection of the
input data sets. However, our experience with the networking
applications studied in this paper shows that they exhibit
very similar behavior even with different input packet traces.
Particularly, we have tested the four applications using three
different sets of packets from the NLANR traces. For the
three input sets, the mean execution times and the standard
deviation for the four applications varied by less than 3%.
On the other hand, our experiments show that the behavior of
the applications was very much dependant on the “internal”
data structures. For example, a change in the routing table
structures used in IPV4Router application has a significant
impact on the mean execution time of a number of elements.
Therefore, to achieve effective task distribution, a user needs
to carefully select the internal structures that will represent
the working conditions of an application.

5. Experiments

5.1 Experimental Setup
The SimpleScalar/ARM version 3.0 simulator [2] is

used to evaluate the proposed techniques. We modified the
processor configuration to model a processor similar to
execution cores in a variety of NP architectures. We
compiled the Click router to run in the user level mode. It is
modified to run in collaboration with the SimpleScalar
simulator. The SimpleScalar simulator is modified to record
the behavior of every packet within a configuration. With the
use of marker elements within the configuration, we track the
every packet within a click configuration and record the
performance of Click elements processing the packets. We

simulate four representative networking applications as
discussed in Section 3.

We perform two sets of experiments. First, we analyze
the proposed task allocation scheme from the throughput
perspective. Particularly, we measure the throughput for
increasing number of processors. In the second set of
experiments, we study the effectiveness of the proposed
optimizations on the task allocation. We measure the
resource (i.e., processor) utilization of the studied
applications with BTD, ETD, SR, and ESR schemes.

5.2 Throughput Analysis
To evaluate the benefits of the proposed schemes, we

compared the relative system throughput of multi-core
processors while allocating task using our proposed schemes.
The baseline configuration for these experiments is a
configuration where the entire application is run in a single
core. Next, we recorded the execution time for each of the
benchmark applications when tasks are distributed among
different cores using proposed schemes. While using
multiple cores we have included a 2% performance penalty
to account for synchronization. This section presents a
comparison based on system throughput.

We must note that pipeline parallelism in general is
beneficial for data-intensive applications, because compared
to data-level parallelism, it reduces the contention on shared
resources. In fact, we have compared our base task
distribution scheme (BTD) with a programming scheme
where all the cores are executing the full application. Our
results indicate that for a 4-core system running the Route
application, the throughput of BTD is 35.8% higher than the
throughput achieved with replicating the code on each core
(which is currently the most common method for

8 Different destinations

DropBroadcast0

DecIPTTL Discard

Discard

DropBroadcast0

DecIPTTL Discard

Discard

InfiniteSource CheckIPHeader Strip(14)

InfiniteSource CheckIPHeader Strip(14)

StaticIP-

Lookup

Discard

8 Different sources

Two Stages

Four Stages

73

programming Network Processors). Our ESR scheme, on
the other hand, performs 42.2% better than this approach.

0

1

2

3

4

5

6

7

8

BTD ETD SR ESR

R
e
la

ti
v
e
 P

ro
c
e
s
s
o

r
T

h
ro

u
g

h
p

u
t

2

4

8

Figure 6. Processor throughput for DRR application

0

1

2

3

4

5

6

7

8

BTD ETD SR ESR

R
e
la

ti
v
e
 P

ro
c
e
s
s
o

r
T

h
ro

u
g

h
p

u
t

2

4

8

Figure 7. Processor throughput for RED application

0

1

2

3

4

5

6

7

8

BTD ETD SR ESR

R
e
la

ti
v
e
 P

ro
c
e
s
s
o

r
T

h
ro

u
g

h
p

u
t

2

4

8

Figure 8. Processor throughput for Home_Node application

0

1

2

3

4

5

6

7

8

BTD ETD SR ESR

R
e
la

ti
v
e
 P

ro
c
e
s
s
o

r
T

h
ro

u
g

h
p

u
t

2

4

8

Figure 9. Processor throughput in Route application

Figures 6 through 9 describe the relative system
throughput of different configurations for the experimental
applications. The figures present the results for 4 variations
as described in Section 5: Base Task Distribution (BTD),
Extended Task Distribution (ETD), Selective Replication
(SR), and Extended Selective Replication (ESR). Note that
the distribution of stages in SR is based on BTD and ESR
uses ETD strategy to place the modules into processor cores.

As described in Sections 5.2 and 5.3, ESR and ETD
schemes use µ+k*σ as the expected processing time.
Therefore, we need to select a k value. Our tests with
different k values showed that k=3 gives the best results
overall. For small k values, the stages for ESR and ETD
were identical to those of SR and BTD, respectively. For
larger k values, on the other hand, the elements with large
variance were assigned to single cores (e.g., stages formed
by only such elements). If the execution time for a packet is
close to or smaller than the mean processing time, this
particular core is underutilized, reducing overall utilization.
The optimal point is achieved when both the producer and
the consumer are utilized fully. The selection of k=3 is the
closest case to this scenario.

We have evaluated four proposed schemes in our study.
BTD is the simplest scheme based on statistical properties of
the packet execution. The other three schemes ETD, SR and
ESR employ additional statistical properties like variation
while allocating task among cores. Subsequently, we observe
performance enhancement in the system due to intelligent
task allocation.

Figures 6 through 9 present relative performances
achieved with respect to single core execution of the original
application after applying the proposed schemes. We see that
task distribution is highly scalable for all the schemes. On
average, for 2, 4, and 8 processors, BTD scheme achieves a
relative throughput of 1.78, 3.25, and 6.15, respectively. The
best throughput improvement is observed for DRR
application. The reason for this behavior lies in the unique
nature of this application. DRR contains two elements with
large execution times. Hence, we can achieve close to perfect
task distribution for two processors. With SR schemes, the
relative throughput for 2, 4, and 8 processors are 1.84, 3.40,
and 6.42, respectively. For all the applications, we can see
that SR performs better than BTD scheme. Due to replication
of the processing elements that takes longer time, SR scheme
improves the overall utilization of the processing cores. We
can notice the improvement for higher number of cores (4 or
8) as that allows us for intelligent allocation of resources.
The best performance is observed for the IPv4Router
application. It has a relative throughput of 6.55 for 8
processors. As shown in Table 2, the IPv4Router application
has a large variation of processing time for different
elements. This variation gets benefited by the SR scheme to
have even processing time for each pipelined stage and
subsequently resulting high throughput scalability.

The extended version of BTD and SR includes an extra
slack of 3σ to the expected processing time of the elements
while task allocation. As shown in the figures, this results in
a throughput improvement for almost all the cases. The
extended schemes perform particularly well for the RED
application. For ESR, the best performance is observed for
the 8-core configuration, when the throughput reaches 7, a
12.5% improvement over BTD. The reason for this
improvement lies in the nature of this application. RED

74

consists of a number of elements with mean processing times
close to each other. Therefore, by considering the standard
deviation in the execution times, we see that the stage
formations can be significantly changed. For other
applications that are dominated by a few elements,
consideration of the extended processing times usually does
not cause a significant change in the stage formation. This is
especially true for the DRR application, where the majority
of the processing time is dominated by two modules.
Moreover, ETD scheme always improves the throughput for
8 processor configurations. On average, for all four
applications, it improves the throughput by 4.4%. On the
other hand, the ESR scheme achieves a relative throughput
of 1.90, 3.49, 6.74 for 2, 4, and 8 core processors,
respectively, aggregated over all four applications.
Henceforth, the combination of Selective Replication and
Extended Slack results significant throughput improvement.
On average, it improves the throughput by 6.4%, 8.4%, and
9.9% for 2, 4, and 8 processors as compared to the BTD
scheme. We must note that the overall performance
improvement achieved by our proposed schemes is
synergistic. While the consideration of variance (ETD) and
replication (SR) improve the performance by 4.4% and
4.3%, respectively, their combination (ESR) provides 9.9%
improvement.

5.3 Resource Utilization Analysis
In the second set of experiments, we measure the

average utilization of the cores. Figure 10 describes the mean
utilization percentage of the cores for the DRR application.
The figure presents the results for 4 variations as described
in Section 5: the Base Task Distribution (BTD), the
Extended Task Distribution (ETD), the Selective Replication
(SR), and the Extended Selective Replication (ESR). The
other applications follow the similar trends.

70

75

80

85

90

95

100

2 4 8

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

BTD ETD SR ESR

Figure 10. Resource Utilization in DRR application

For almost all the applications, we see that the ESR
scheme gives the best utilization. In general, we see that both
of our optimizations increase the utilization. Particularly, SR
almost always performs better than the BTD. A larger
number of elements are useful for achieving a higher
utilization. With the larger number of elements, we can form
stages that are close to each other in the execution times. The
only exception to this rule is the DRR application executed
on 2 cores. For this application, SR and BTD provide the
same throughput. The reason for this behavior lies in the

unique property of the DRR application. DRR contains two
elements with large execution times. Hence, without
replication, we can achieve close to perfect task distribution.
Particularly, DRR achieves the best utilization for 2-core
processor with 95%, which cannot be improved with the SR
scheme. In addition, we see that the ETD and ESR schemes
always perform better than the BTD and SR schemes,
respectively. We observe a similar trend for the remaining
three applications. Overall, the ESR scheme achieves the
best utilization with 95%, 89%, and 84% on average for the
processors with 2, 4, and 8 cores, respectively, aggregated
over all four applications. The average utilization for the
BTD scheme, on the other hand, is 88%, 81%, and 77% for
the processors with 2, 4, and 8 cores, respectively.

6. Related Work
Task allocation has been an active research area in a

number of domains. In behavioral synthesis research, the
objective is to assign operations to hardware and optimize
the usage of storage and communication paths [6]. While
analogous to the problem faced here, these approaches are
best suited for synthesizing datapath elements for small
computational kernels. In the multiprocessor domain,
Chekuri et al. [3] and Shachnai [20] proposed approximation
algorithms to solve the problem for general multiprocessor
models. However, they fail to consider practical resource
constraints.

We have used Click infrastructure which is the most
relevant and established academic C++ programming model
and environment for building packet processing applications
on a single, general-purpose, processor. Shangri-La [4] is a
work that matches our interest pretty closely. Shangri-La is
based on Baker [24] that bears many similarities to Click,
especially in regards to its modeling of communication
channels (CCs). However, the optimizations presented in
their scheme do not consider the variations observed in the
packet execution. Due to architectural and technology
differences, it is difficult to make any performance
comparison between our system and theirs. Gordon et. al. [7]
proposed schemes that employs task distribution among
different cores similar to ours. The novelty of our scheme
lies on the fact that the task distribution is based on the
statistical.

Plishker [16] exploited the flexible framework of ILP to
generate optimal solutions to the mapping problem. Such
techniques are usually computationally expensive. Srinivasan
et al. [22] considered the scheduling problem for the Intel
IXP1200 and presented a theoretical framework in order to
provide service guarantees to applications. However, their
methodology was not tested with real network applications.

A number of programming environments were proposed
for NPs. NP-Click [21] is an extended programming model
based on Click Router. It is implemented on the Intel
IXP1200 architecture. Memik and Mangione-Smith [14]
proposed a programming environment that considers the task

75

allocation. However, none of these techniques used the
variation in execution time to optimize the allocation
schemes. Datar and Franklin [5] proposed greedy-pipe
algorithm to solve problems associated with determining
optimal application task assignments for pipelines in CMP
based NP. However, their study is performance oriented and
the execution core utilization has not done by them.

7. Conclusions
In this paper, we have presented a method for allocating

tasks in Network Processors. Our task allocation scheme
utilized the modular nature of networking applications.
Variation in execution time is an inherent property of
processing. The goal is to estimate this variation for different
parts of the code and perform the task allocation accordingly.
We present two task allocation schemes. The first one (SR)
simply replicates the modules based on their execution time,
whereas the second one (ESR) considers the variation in
execution time of the modules when making replication
decisions. Results reveal several important characteristics of
our proposed schemes. First, they show that the base task
distribution scheme achieves high levels of scalability. In
addition, the extended processing time and replication
scheme help to improve the performance. In particular, the
consideration of variance (ETD) and replication (SR)
improve the performance by 4.4% and 4.3%, respectively.
The combination of the extended processing time and the
selective replication (ESR) improves the performance of the
base scheme by 9.9% on average for the processor with 8
cores. It achieves an average utilization of 95%, 89%, and
84% for the processors with 2, 4, and 8 cores, respectively.

8. REFERENCES
[1] Baker, F., Requirements for IP version 4 routers. RFC

1812, June 1995.
[2] Burger, D. and T. Austin, The SimpleScalar Tool Set,

Version 2.0. 1997, Univ. of Wisconsin-Madison, Comp.
Sci. Dept.

[3] Chekuri, C., Approximation Algorithms for Scheduling

Problems,Technical Report CS-TR-98-1611,, Computer
Science Department, Stanford University. August 1998.

[4] Chen, M.K., et al., Shangri-La: achieving high

performance from compiled network applications while

enabling ease of programming. ACM SIGPLAN Notices,
2005. 40(6): p. 224-236.

[5] Datar, S. and M.A. Franklin, Task Scheduling of Processor

Pipelines with Application to Network Processors,
Department of Computer Science and Engineering,
Washington University in St.Louis.

[6] Devadas, S. and A.R. Newton., Algorithms for Hardware

Allocation in Datapath Synthesis. IEEE Trans. On CAD,
July 1989. 8, No. 7, pp. 768-781,(7).

[7] Gordon, M.I., W. Thies, and S. Amarasinghe, Exploiting

coarse-grained task, data, and pipeline parallelism in

stream programs, in International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS). 2006. p. 151-162.

[8] Intel. The Intel® Pentium® 4 processor - Product Briefs,
[http://www.intel.com/design/Pentium4/prodbref/index.ht
m].

[9] Intel, Intel® IXP2400 Network Processor Thermal and

Mechanical Design Guideline. March 2003.
[10] Intel, C., Intel® IXP2800 Network Processor Product

Brief. 2002: Santa Clara/CA.
[11] Kohler, E. The Click Modular Router Project. in

http://pdos.csail.mit.edu/click.
[12] Kohler, E., et al., The Click modular router. ACM

Transactions on Computer Systems, 2000. 18(3): p. 263-
97.

[13] McMahan, S., et al. A 600 MHz NT3 network processor. in
The Digest of Technical Papers for IEEE International

Solid-State Circuits Conference (ISSCC). 2003.
[14] Memik, G. and W.H. Mangione-Smith. NEPAL: A

Framework for Efficiently Structuring Applications for

Network Processors. in Workshop on Network Processors

– NP2 (held in conjunction with HPCA). Feb. 2003.
Anaheim, CA.

[15] Motorola, C-5 Network Processor Fact Sheet. Oct. 2001.
[16] Plishker, W., et al. Automated Task Allocation for Network

Processors. in Network System Design Conference

Proceedings. October, 2004.
[17] Postel, J., Internet Control Message Protocol. RFC 792

(Sept.), Internet Engineering Task Force.

ftp://ftp.ietf.org/rfc/rfc0792.txt. 1981.
[18] Postel, J., Internet Protocol. RFC 791 (Sept.), Internet

Engineering Task Force. ftp://ftp.ietf.org/rfc/rfc0791.txt,
1981.

[19] Schreedhar, M. and G. Varghese. Efficient Fair Queueing

using Deficit Round Robin. in SIGCOMM'95. Aug/Sep
1995. Cambridge, MA.

[20] Shachnai, H. and T. Tamir. Polynomial time

approximation schemes for class-constrained packing

problems. in Proceedings of Workshop on Approximation

Algorithms. 2000.
[21] Shah, N., W. Plishker, and K. Keutzer. NP-Click: A

Programming Model for the Intel IXP1200. in 2nd

Workshop on Network Processors (NP-2) at the 9th

International Symposium on High Performance Computer

Architecture (HPCA-9). February, 2003. Anaheim, CA.
[22] Srinivasan, A., Multiprocessor Scheduling in Processor-

based Router Platforms: Issues and Ideas. Network
Processor Design:Issues and Practices, November 2003.

[23] Tsai, M., et al. A Benchmarking Methodology for Network

Processors. in 1st Network Processor Workshop, 8th Int.

Symposium on High Performance Architectures. 2002.
[24] Vin, H.M., et al. A Programming Environment for Packet-

processing Systems: Design Considerations. in The

Workshop on Network Processors & Applications - NP3.

Held in conjunction with The 10th International

Symposium on High-Performance Computer Architecture

2004.
[25] Wheeler, B. and L. Gwennap, A Guide to Metro Network

Processors. 8 ed. December, 2006: The Linley Group.

76

