
Power and Performance Evaluation of Globally Asynchronous Locally 
Synchronous Processors * 

Anoop Iyer Diana Marrculescu 

Electrical and Computer Engineering Department 
Carnegie Mellon University, Pittsburgh, PA 15213 

Email: {aiyer, dianam} @ece.cmu,edu 

Abstract 

Due to shrinking technologies and increasing design sizes, 
it is becoming more difficult and expensive to distribute a 
global clock signal with low skew throughout a processor 
die. Asynchronous processor designs do not suffer from this 
problem since they do not have a global clock. However, a 
paradigm shift from synchronous to asynchronous is unlikely 
to happen in the processor industry in the near future. Hence 
the study of  Globally Asynchronous Locally Synchronous (or 
GALS) systems is relevant. In this paper we use a cycle- 
accurate simulation environment to study the impact o f  asyn- 
chrony in a superscalar processor architecture. Our results 
show that as expected, going from a synchronous to a GALS 
design causes a drop in performance, but elimination of  the 
global clock does not lead to drastic power reductions. From 
a power perspective, GALS designs are inherently less effi- 
cient when compared to synchronous architectures. However, 
the flexibility offered by the independently controllable local 
clocks enables the effective use of other energy conservation 
techniques like dynamic voltage scaling. Our results show 
that for a 5-clock domain GALS processor, the drop in perfor- 
mance ranges between 5-15%, while power consumption is 
reduced by 10% on the average. Fine-grained voltage scaling 
reduces the gap between fully synchronous and GALS imple- 
mentations, allowing for  better power efficiency. 

1 Introduction 

Most conventional microprocessor designs are syn- 
chronous in their construction; that is, they have a global 
clock signal which provides a common timing reference 
for the operation of all the circuitry on the chip. On the 
other hand, fully asynchronous designs built using self-timed 
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circuits do not have any global timing reference; exam- 
pies of this design style are given in Sutherland's work 
on Micropipelines [1]. Globally Asynchronous Locally 
Synchronous systems (which we refer to as GALS systems 
in this paper) are an intermediate style of design between 
these two. GALS systems contain several independent syn- 
chronous blocks which operate with their own local clocks 
and communicate asynchronously with each other. The main 
feature of these systems is the absence of a global timing ref- 
erence and the use of several distinct local clocks (or clock 
domains), possibly running at different frequencies. 

1.1 Motivation 

The idea of GALS system design is in itself not new [2]. 
Interest in GALS design is now growing due to the following 
reasons: 

Global clock distribution: Trends of increasing die 
sizes and rising transistor counts may soon lead to a 
situation in which distributing a high-frequency global 
clock signal with low skew throughout a large die is pro- 
hibitively expensive in terms of design effort, die area, 
and power dissipation. GALS systems eliminate the 
need for careful design and fine-tuning of a global clock 
distribution network. 

Design reuse: Designers are now seriously exploring 
opportunities for reusing IP cores, and system-on-chip 
design is gaining popularity. Integrating several cores 
on one chip may not always be possible with a single 
clock system; different cores may have different clock 
requirements and operating frequencies. GALS systems 
with standardized asynchronous interfaces will facilitate 
design reuse. 

Inertia: While a fully asynchronous design style 
promises to solve both the above problems, a complete 
migration from synchronous to asynchronous systems is 
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not likely to happen in the immediate future; CAD tools 
for asynchronous design are mature, but not commer-  
cially strong yet. 

In the microprocessor industry, global clock distribution 
issues (further discussed in section 2) are perhaps the best 
motivating factor for the study of GALS systems. However  
since products in this arena are highly performance-driven, 
we need to evaluate the impact of  asynchronous communica-  
tion on performance and power. We describe in this paper the 
development of  a modeling and simulation framework and the 
results of  some experiments with a hypothetical superscalar 
GALS processor design. We have attempted to address the 
following issues: 

If  we design a microprocessor in a GALS style with mul- 
tiple clock domains, how much performance overhead 
will it incur over a fully synchronous processor? 

Will the elimination of the global clock network help in 
reducing power in a microprocessor, as other works have 
claimed? 

• How can we exploit the extra flexibility offered by inde- 
pendent clock domains in a GALS processor? 

In this work, we show that GALS processors are no t  

necessarily more power efficient than fully synchronous de- 
signs, as it has been previously claimed, but they m a y  be- 
come so if clock speed and supply voltage are tuned for 
each synchronous block. Eventually, fine adaptation can be 
extended to support application-driven, multiple-domain dy- 
namic clock/voltage scaling. 

1.2 Related Work 

Sutherland's paper on M i c r o p i p e l i n e s  [1] contains a good 
introduction to asynchronous design. Asynchronous proces- 
sor cores have been in development for over a decade now; 
for example, the Amulet  processor core developed at Manch- 
ester, which implements the ARM instruction set, is in its 
third generation and is commercial ly viable and competitive 
[3]. GALS systems were studied in detail by Chapiro in his 
1984 PhD thesis [2]. His work covers metastability issues 
in GALS systems and outlines a stretchable clocking strat- 
egy which provides a mechanism for asynchronous commu-  
nication. Chelcea and Nowick propose in [4, 5] the use of  
FIFOs as a low-latency asynchronous communication mech- 
anism between synchronous blocks. Hemani et al. estimated 
in [6] the clock power savings in GALS designs compared 
to synchronous designs. However, their work targets a regu- 
lar ASIC design flow with simpler clocking strategies rather 
than the aggressive clock distribution networks used in mi- 
croprocessors. Muttersbach et al. have implemented asyn- 
chronous wrappers around synchronous blocks [7]; they have 

used these wrappers along with asynchronous memory  blocks 
to implement an ASIC and have thus proved the feasibility of  
GALS design in silicon. However they have not provided any 
direct performance comparisons between GALS systems and 
synchronous systems. A similar system has been proposed 
by Moore et al. in [8]; pausible clocking for GALS systems 
has been described by Yun and Dooply in [9]. The work of 
Semeraro et al. [10] is the closest to our GALS study. They 
show the effect of  voltage scaling by using off-line profiling 
of the application. 

1.3 Organization of this Paper 

The rest of  this paper is organized as follows: 

• In section 2 we discuss global clock distribution methods 
and the challenges it poses, and thus motivate the study 
of GALS systems. 

• In section 3 we describe some of the issues involved in 
GALS processor design. 

• In section 4 we outline an architecture for a hypothetical 
GALS processor and describe the simulation and mod- 
eling setup which we used to study power and perfor- 
mance trends in this processor. 

• In section 5 we show some results on power and perfor- 
mance trends. 

• Finally in section 6 we summarize our contributions and 
conclude with some future directions for research on 
GALS processors. 

2 C l o c k  Di s t r ibut ion  

2.1 Design Practices 

Generating a high frequency clock signal and distributing 
it across a large die with low skew is a challenging task de- 
manding a lot of design effort, die area and power. Restle 
et al. [11] and Bailey and Benschneider [12] give a good 
overview of clocking system design for high-performance 
processors. 

In most processors, a phase lock loop (PLL) generates a 
high frequency clock signal from a slower external clock. A 
combination of a metal grid and a tree of  buffers is used to dis- 
tribute the clock throughout the chip. Trees have low latency, 
dissipate less power and use less wiring; but they need to be 
rerouted whenever the logic is modified even slightly, and 
in a custom-designed processor, this requires a lot of  effort. 
Trees work well if the clock loading is uniform across the 
chip area; unfortunately, most  microprocessors have widely 
varying clock loads. Metal grids provide a regular structure 
to facilitate the early design and characterization of the clock 
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network. They also minimize local skew by providing more 
direct interconnections between clock pins. 

Moreover, clocking in most  processors today is hierarchi- 
cal. Figure 1 shows an example of  a hierarchical distribu- 
tion network; several major clocks are derived from a global 
clock grid, and local clocks are in turn derived f rom the major 
clocks. This approach serves to modularize the overall design 
and to minimize the local skew inside a block. It also has the 
advantage that clock drivers for each functional block can be 
customized to the skew and drive requirements of  that block; 
thus the drive on the global clock grid need not be designed 
for the worst-case clock loading. 

Global 
clock 

'"III111 
Ill',',',',',', 

I 

Major Local 
clocks clocks 

Figure 1. An example of a hierarchical clock distri-  
bution network 

2.2 Case Study 

Restle et  al. have argued in [11] that clock skew arises 
mainly due to process variations in the tree of  buffers driving 
the clock. Since device geometries will continue to shrink 
and clock frequencies and die sizes will continue to increase, 
global clock skew induced by such process variations can 
only get worse. Hence we argue that we will reach a point 
where skew will thus eat up a significant proportion of  the 
cycle time and thus will directly affect performance. 

This point may already have been reached. Table 1 shows 
a case study of a few processor designs spanning four major 
CMOS technology generations which entered the market dur- 
ing the last decade. The numbers in the table clearly show that 
technology scaling has led to a dramatic increase in design 
size and speed. However, since interconnects do not scale as 
well as transistor gate lengths do, these numbers indicate that 
the complexity of  the clock distribution task has increased 
even more dramatically; we now have to clock many more 
registers with much smaller skew budgets than before. 

Designers have handled this increased design complexity 
using complicated hierarchical distribution systems like the 
one shown in Figure 1. However, even a complex system of 
multiple grids and H-trees is not sufficient for today's  Giga- 
hertz clocks. For instance, the 800-MHz prototype of  the Ita- 
nium chip has a projected skew of  110 ps using a hierarchical 
distribution scheme with multiple grids and trees. This skew 
is almost 10% of the total cycle time. The Itanium design- 
ers have added a network of 32 active deskewing circuits [ 13] 

which connect multiple local clock grids together and help in 
bringing down the overall skew to 28 ps. 

While techniques like active deskewing help to push the 
envelope for clocked systems further, they come at a signifi- 
cant cost in terms of die area and power dissipation. At some 
point, pushing the limits of  clock distribution networks will 
lead to diminishing marginal returns. At that stage, GALS 
design techniques will come in useful. 

3 Globally Asynchronous Locally 
chronous Processor Design 

Syn- 

In this section we discuss some architectural issues in- 
volved in the design of a globally asynchronous locally syn- 
chronous processor, with focus on performance and power 
evaluation. Since our primary focus is at the architecture 
level, we choose to omit several lower-level issues in our 
study. Some areas which have been dealt with in detail else- 
where are: 

• Metastability resolution: The problem of metastable 
signals and techniques for metastability resolution using 
synchronizers and arbiters are discussed in [14]. Our 
approach uses asynchronous FIFOs [4, 5] between clock 
domains and this in turn relies on synchronizers. 

• Local clock generation: Each clock domain in a GALS 
system needs its own local clock generator; ring oscil- 
lators have been proposed as a viable clock generation 
scheme [2, 7]. We assume that we can use ring oscilla- 
tors in each synchronous block in the GALS processor. 

• Failure modeling: A system with multiple clock do- 
mains is prone to synchronization failures; we do not at- 
tempt to model these since their probabilities are minis- 
cule (but non-zero) [14] and our work does not target 
mission-critical systems. 

3.1 Defining Synchronous  Blocks 

Hemani  et  al. have described an automated strategy for 
defining locally synchronous blocks in a GALS design [6]. 
Starting from a hierarchical RTL description of  the system, 
their method uses iterative refinement to get an optimal par- 
titioning of the system into a number of  synchronous blocks, 
using clock power as an objective function for optimization. 
In a custom-designed system like a microprocessor, perfor- 
mance requirements justify manual intervention in the parti- 
tioning phase. Since the primary motivation behind GALS 
design is to avoid distributing a common clock signal over 
large areas, the strategy for partitioning the design into syn- 
chronous blocks will largely be dictated by physical design 
aspects. However, since asynchrony can lead to higher laten- 
cies, it is crucial to take architecture issues into account when 
partitioning the design. 
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Design Technology Device count Cycle time 
Alpha 21064 
Alpha 21164 
Alpha 21264 
Itanium (with active deskewing) 
Itanium (withoutactive deskewing) 

0.8 pm (1992) 
0.5 prn (1995) 
0.35 pln (1998) 
0.18 pm (2001) 
0.18 pm (2001) 

1.6M 
9.3M 
15.2M 
25.4M 
25.4M 

Skew 
5 ns 200 ps 

3.3 ns 80 ps 
1.7 ns 65 ps 
1.25 ns 28 ps 
1.25 ns 110 ps 

Remarks 
Single line of drivers for clock grid 
Two lines of drivers for clock grid 
16 distributed lines of drivers 
32 active deskewing circuits 
Projected skew without deskewing 

Table 1. Trends in global clock skew for microprocessor designs across process generations 

In the traditional superscalar out-of-order processor model 
the instruction flow consists of fetching instructions from the 
instruction cache, using the branch predictor tor successive 
fetch addresses. The register dataflow consists of issuing in- 
structions out of the instruction window and forwarding re- 
sults to dependent instructions. The memory dataflow con- 
sists of issuing loads to the data cache and forwarding data to 
dependent instructions. Introducing high latencies in any of 
these three crucial flows will have an impact on the proces- 
sor's performance. 

The level 1 instruction cache and the branch predictor 
taken together are a good candidate for one synchronous 
block corresponding to the front-end of  the pipeline. In some 
architectures, notably in CISC architectures like Intel's IA- 
32, the decode logic occupies a large area and consists of 
several pipe stages; in such cases, decode would be a good 
candidate for another synchronous block. 

Inside the out-of-order execution core, it is difficult to 
make generalizations and say which parts of the core may be 
decoupled without much overhead and which may not; such 
decisions are very specific to the microarchitecture and the in- 
struction set of the processor. Area and clock distribution con- 
siderations obviously suggest this partitioning to some extent. 
For instance in the 21264 Alpha the 'major clocks' (tapped 
from the global clock and distributed locally) are defined this 
way, based mostly on the top-level hierarchy of the design; 
they suggest a partitioning system for that specific implemen- 
tation. The 21264 has the following major clocks [12]: (1) 
instruction fetch and branch predict (2) bus interface unit (3) 
integer issue and execution units (4) floating point issue and 
execution units (5) load/store unit (6) pad ring. We shall re- 
visit this implementation in section 4 where we describe our 
proposed GALS architecture. 

3.2 Asynchronous  Communicat ion  Mechanisms 

Many methods have been proposed for clocking GALS 
systems with stretchable clocks [2, 7, 8]. Such clocking 
systems manage asynchronous communication between two 
clock domains by stretching one phase of  both the clocks 
while the handshaking and data transfer takes place. This is 
typically done using an arbiter element inside the loop of a 
ring oscillator. While this mechanism provides an elegant 
and fail-safe method of communication, it also stalls both 
the synchronous blocks during the transaction. In a proces- 

sor pipeline, transactions occur practically during every cy- 
cle. Stretching the clock every cycle would lead to a situation 
where the effective clock frequency is determined not by the 
clock generator but by the rate of communication with other 
synchronous modules. 1 This is not desirable, especially in 
systems where the frequencies of the different clocks have 
been chosen to meet performance and power requirements. 

FIFO 
req --~ ~.--- req 

data --~ [ ~ } [ ~  ~ data 
full ~-L ~ empty 

clkl ---~ L ~ _ ] [ ]  ~ c l k 2  
valid 

Figure 2. Asynchronous FIFO for interfacing two 
clock domains 

Chelcea and Nowick have presented in [4, 5] a design for 
a low-latency token-ring based FIFO which can be used for 
asynchronous communication between synchronous blocks. 
The interfaces to the FIFO are shown in Figure 2. Their de- 
sign uses full and empty signals to indicate the occupancy 
of the FIFO. The empty signal is controlled by the producer 
of data into the FIFO and is synchronized to the consumer's 
clock; similarly, the full signal is controlled by the consumer 
and is synchronized to the producer's clock. A few modi- 
fications are made to the circuit to account for latencies in 
synchronization and to prevent deadlock. In addition to pro- 
viding high throughput in the steady state, the design has low 
latency when compared to other methods we tested. Since the 
focus of our work is at a higher level of abstraction, we shall 
not go into further details; a complete description of the op- 
eration of  the circuit is given in [4, 5]. We shall refer back 
to this FIFO structure when describing our experiments with 
GALS design. 

3.3 Multiple Supply Voltages 

An interesting possibility with the use of multiple local 
clocks with potentially different speeds is the use of multiple 

1To an extent, this behavior is rather like the timing behavior of Suther- 
land's Micropipelines, where the rate of forward communication in the 
pipeline makes the system self-timed. 
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local supply voltages in a dynamic or application-dependent 
manner. Since applications vary in their usage of  processor 
resources, intelligent selection of  clock frequencies can give 
us significant power savings with minimal impact on perfor- 
mance. The simplest example of this is slowing down or shut- 
ting off  the floating-point units while running integer applica- 
tions. Selectively slowing down certain regions of  the proces- 
sor is more easily achieved in a GALS design than in a syn- 
chronous design because different subsystems run on differ- 
ent clocks and these clocks can be independently controlled. 

If  some parts of  the core are slowed down, they can be 
operated at a lower supply voltage too. In such a system, 
the asynchronous communication interfaces between syn- 
chronous blocks will need to have level-conversion circuits. 
The amount by which we can reduce the voltage depends on 
the slowdown of the clock. Since energy consumption is de- 
pendent on the square of the supply voltage, reducing the sup- 
ply voltage will lead to significant energy benefits. 

The relationship between logic delay D and supply voltage 
Van is given by the following equation [ 15]: 

Vdd D o~ (1) 
(Vdd -- V,)~ 

where Vt is the threshold voltage of  the transistor and cx is 
a technology-dependent factor. For a 0.35 pm technology, 
0c is 2; for smaller technologies, the value of cx is between 
1 and 2. This implies that savings arising out of  dynamic 
voltage scaling for a given delay value are higher for smaller 
technology generations. 

4 A G A L S  A r c h i t e c t u r e  

We have studied a superscalar processor model and have 
attempted to build a GALS model which duplicates its 
pipeline structure for the most part, so that we can compare 
GALS processors with synchronous processors in terms of 
power and performance. The architecture that we chose for 
our study is a hypothetical processor resembling the 21264 
Alpha in some ways. 

4.1 T h e  A r c h i t e c t u r e  

After a detailed look at the architecture, we chose to have 
five clock domains in the GALS version of  the design. Figure 
3 shows the pipeline structure of both the synchronous (base) 
processor and the GALS processor we designed. The bound- 
aries between clock domains in the GALS processor are in- 
dicated by dotted lines. In the base (synchronous) model, all 
the logic runs off the same clock. In the GALS model, various 
regions are clocked using different clock signals independent 
of  each other. The first stage of  the pipeline consists of an 
instruction cache and branch prediction unit (clock domain 
1). The next stages are instruction decode and register re- 
name (clock domain 2). There are three issue queues in the 

Stage 
1 Fetch from I-cache 
2 Decode 
3 Register rename, Regfile read 
4 Dispatch into issue queue 
5 Issue to functional unit 
6 Execute 
7 Wakeup, Writeback 
8 Regfile write, Commit 

Operation Domains 
1 
2 
2 

2, 3/4/5 
3/4/5 
3/4/5 
3/415 

3/4/5, 2 

Table 2. Pipeline stages in our processor models 

Fetch and decode rate 
Integer issue queue size 
FP issue queue size 
Memory issue queue size 
Integer registers 
FP registers 
L1 data cache 

L1 instruction cache 

L2 unified cache 

ALUs 

4 inst/cycle 
20 
16 
16 
72 
72 
16KB 4-way 
1 cycle latency 
16KB direct-mapped 
1 cycle latency 
256KB 4-way 
6 cycles latency 
4 integer, 4 FP 

Table 3. Microarchitecture details of our processor 
models 

design: one for integer instructions (clock domain 3), one for 
floating-point instructions (clock domain 4) and one for loads 
and stores (clock domain 5). In the GALS processor, the inte- 
ger ALUs and the integer issue queue are in the same clock- 
ing region. This ensures that dependent instructions within 
the integer issue queue can be issued back-to-back as soon 
as operands are available. Similarly, floating-point ALUs and 
the floating-point issue queue share one clock, and the data- 
cache, the level-2 cache and memory issue queue share one 
clock. 

In the synchronous version, communication between suc- 
cessive logic blocks is done using regular pipe stages. In the 
present version of  the GALS model, asynchronous FIFOs de- 
scribed in section 3.2 have been used. 

Table 2 gives a summary of  the pipeline stages in the pro- 
cessor models we developed for our experiments, along with 
a listing of  the clock domains of  the GALS processor which 
are involved in each pipe stage. Table 3 describes the microar- 
chitecture in some detail. 

4 .2  A G A L S  S i m u l a t i o n  F r a m e w o r k  

Building a cycle-accurate simulator for a single-clock 
pipelined system is simple; in C, we only need to call vari- 
ous pipe-stage functions in the reverse order of  their occur- 
rence in the pipeline. However, to simulate a multiple-clock 
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Figure 3. Pipeline of the simulated architecture 

sys tem where the different  c locks  have  ent i re ly  independen t  
f requency and phase,  we need a more  deta i led  s imula t ion  i n'.- 
frastructure.  

We have writ ten a genera l -purpose  event-dr iven s imula t ion  
engine  which can be used to s imulate  any asynchronous  sys-  
tem, synchronous  (c locked)  system,  or  a sys tem which con- 
tains both asynchronous  and synchronous  components .  The 
guts o f  this event-dr iven s imula t ion  engine  consis t  o f  an event  
queue and a g lobal  timer. The  event  queue  is imp lemen ted  as 
a s ingly  l inked list in C. Each node o f  the queue  contains  the 
fo l lowing fields: 

• a funct ion to call  at each occur rence  of  the event;  

• a pa ramete r  to call the funct ion with; 

• a t ime at which the event  is scheduled  to occur;  

• a pr ior i ty  number  to de te rmine  the order  o f  execut ion 
of  events which  are scheduled  occur  at the same t ime 
instant; 

• for per iod ic  events,  a t ime per iod  of  repet i t ion (for s im- 
ulat ion of  c locked  systems) ,  and 

• a poin ter  to the next  queue  i tem. 

To set the sys tem in mot ion,  we need to insert one or 
more  start ing events into the event  queue.  The queue  contains  
events  sor ted in increas ing order  o f  their  schedu led  t imes.  

Hertce, p rocess ing  the event  queue  for running the s imula-  
tion is easy;  we only need to read success ive  e~ents from the 
head of  the queue and  execute  them by cal l ing the: appropr ia te  
execut ion functions.  To s imulate  c locked  systems,  we need to 
insert one event  for  each c lock  domain ;  for each such event, 
we need to spec i fy  a t ime per iod.  W h e n  the execut ion engine  
processes  such a per iodic  event,  it schedules  another  instance 
of  the same event  into the queue,  thus represent ing the next  
cycle  o f  execut ion o f  the c locked  system. 

Figure  4 (a) shows an e xa mple  o f  a system with three c lock  
domains ,  each o f  which has a different  c lock  frequency. To 
s imulate  this system,  we need to add three start ing events into 
the even(  queue,  all o f  which are per iodic ,  to represent  the 
three c lock  domains .  F igure  4 (b) shows the C code which 
models  the system. 

4.3 Per formance  and Po w er  Mode l s  

To evaluate  the above  archi tecture ,  we wrote mode l s  o f  
both the synchronous  and the G A L S  processors  using the 
S implesca la r  toolset  [16]. S implesca l a r  provides  a compre -  
hensive infrastructure for m o d e l i n g  and s imula t ion  o f  mi-  
croarchi tecture  features.  To s imula te  the G A L S  processor ,  
we made  use of  the event -dr iven  s imula t ion  engine  descr ibed  
earl ier  in sect ion 4.2. We have set up five c lock  domains  in 
our s imula tor  and in the first set  o f  exper iments ,  had all the 
c locks  running at the same speed.  The  start ing phase  of  each 
c lock  was set to a r andom value  at runt ime.  
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Clock 1 Clock 2 
T = 2 n s  T = 3 n s  

C l o c k  3 
T = 2.5 ns 

c l o c k  I ~_~ 
c l o c k  2 
c l o c k  3 / 

0 

F- I  I - - I  I - - I  
I [ - - I  [ - -  

1 I I [ - - 1  I - -  
I I I I I I I 

2 3 4 5 6 7 8 

time (ns) - 

(a) 

init_event_queue (); 
add_event (/* start time */  0.5, 

/* function */ &clockl_logic, 

/* param */ NULL, 

/* period */ 2.0); 

add_event (/* start time */ 1.0, 
/* function */ &clock2_logic, 

/* param */ NULL, 

/* period */ 3.0} ; 

add_event (/* start time */ 0.0, 
/* function */ &clock3_logic, 

/* param */ NULL, 

/* period */ 2.5); 

process_event_queue () ; 

(b) 

Figure  4. E v e n t - d r i v e n  G A L S  sys tem s i m u l a t i o n .  
(a) A n  e x a m p l e  sys tem.  ( b ) C  code  for  s i m u l a t i n g  

th is  s y s t e m .  

We used the Wattch framework [17] to add power models 
to our processor simulation. Wattch provides switching ca- 
pacitance modeling for structures like ALUs, caches, arrays 
and buses in a processor. These are integrated into our base 
and GALS simulators to provide energy statistics. To account 
for overheads arising from clock-gating and leakage currents, 
we modeled unused modules as consuming 10% of their full 
power. We also modeled power consumed by the FIFOs used 
for communication between domains. 

In addition to modeling the switching capacitance of mem-  
ories and buses inside the processor, we have also modeled 
the switching capacitance of clock grids. For the synchronous 

base processor model, we assumed a clock distribution hi- 
erarchy resembling that of  the 21264 Alpha processor. We 
modeled one global clock grid and five local clock grids cor- 
responding to the five clock domains discussed in section 3.1. 
The areas and metal densities of  each clock grid were approx- 
imated by the numbers published for the 21264 processor. For 
the GALS processor, since there is no global clock, we elim- 
inated the switching capacitance of  the global clock grid and 
retained the five major clock grids, corresponding to the dis- 
tribution networks for each of the synchronous blocks. 

5 Experimental Results 

To assess the performance and power of  our proposed 
GALS processor design, we tested the base and the GALS 
simulators with a set of  benchmarks taken from the Spec95 
[18] and the Mediabench [19] benchmark suites. We have 
performed two sets of  experiments: 

I. Base versus GALS performance and power analysis with 
all synchronous blocks running at the same clock fre- 
quency and supply voltage. 

2. Base versus a multiple-clock, multiple-voltage GALS 
design. 

5,1 P o w e r  a n d  P e r f o r m a n c e  A n a l y s i s  

Performance 

Not surprisingly, the GALS processor is slowed down by 
asynchronous communication and does not perform as well 
as the synchronous processor. Figure 5 shows the relative 
slowdown of various benchmarks running on the GALS pro- 
cessor when compared to the synchronous processor. On an 
average, the benchmarks we ran on GALS were slower by 
10% when compared to base. As expected, thefpppp bench- 
mark had the lowest performance hit. This is due to the ap- 
plication's exceptionally small proportion of  branch instruc- 
tions; on an average only one in every 67 instructions is a 
branch in this benchmark, while most  other applications have 
one branch for every five to six instructions. This indicates 
that the asynchronous FIFO models used in our design have 
good throughput in the steady state when there are no branch 
mispredictions. This also suggests that branch mispredic- 
tions will prove more expensive in the GALS model due to 
its longer recovery pipeline. 

We have also observed that the performance of  the GALS 
processor varies with the relative phase of  the various clocks, 
especially in the case where all the clocks are of  the same 
frequency. This variation is of  the order of  0.5%. 

Instruction Latencies 

On close examination of other statistics in the processor 
pipeline, we can see that the introduction of asynchronous 
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communication latencies inside the design has led to various 
other overheads which in some cases offset the power gains 
due to the absence of  global clock. For instance, the slip (the 
average time taken by each instruction from the fetch to the 
commit stage) increases by 65% on average for all bench- 
marks in the GALS processor, as seen in Figure 6. This is 
because the addition of asynchronous communication chan- 
nels leads to an increase in the effective length of  the pipclinc. 
Figure 7 shows the proportion of  this slip time which is spent 
in the FIFOs (marked "FIFO" in the graph) versus the pro- 
portion of time spent in execution units, issue queues, etc. 
(marked "pipeline" in the graph). As we expect, the differ- 
ence in slip between the GALS and the base versions is due 
in part to the time spent in the FIFOs. However, there is still 
an increase in the slip which cannot be accounted for by the 
time spent in FIFOs alone; this is caused by the latency in 
torwarding results from one queue to another through FIFOs. 
Note that this delay is caused by the FIFO latency of forward- 
ing results and not by the latency in the instruction flow. 

Speculation 

This increase in pipeline length in the GALS processor also 
leads to higher speculative execution, as shown in Figure 8. 
This is most marked for the integer applications we tested, 
where the percentage of mis-speculated instructions goes up 
from 13.8 percent in the base processor to 16.7 percent in the 
GALS processor. Increase in speculation is tess for appli- 
cations containing many long-latency instructions. Similarly, 
we have observed that the average number of in-flight instruc- 
tions in the pipeline is higher in the GALS model; so is the 
average occupancy of the register allocation tables and issue 
queues. For instance the integer register allocation table oc- 
cupancy went up from 15 in base to 24 in GALS for the ijpeg 
benchmark. 

Power  

Figure 9 shows the relative total energy and average power 
consumption of the GALS processor, normalized to the re- 
spective measures of the base processor. In most benchmarks, 
the elimination of  the global clock has resulted in some sav- 
ings in the per-cycle power dissipation. But due to the extra 
switching activity inside the core, higher occupancies of  the 
issue queues and register allocation tables, increased specula- 
tion and higher execution times, the total energy needed for 
execution is not necessarily lower, but is higher for the GALS 
processor in some cases. For the benchmarks we tested, this 
increase in energy is 1% on average. 

Figure 10 shows the breakdown of the base and GALS 
model power consumption into various macro blocks. From 
the figure, we can see that power gains arising from elimi- 
nation of the global clock are offset by the increased power 
consumption of other blocks. 
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Figure 9. Energy and power consumption of the 
GALS processor normalized to those of the base 
processor 

5.2 Multiple-Clock, Multiple-Voltage Processors 

In a second set of experiments, we tried to determine 
which parts of the processor could be slowed down in 
an application-dependent manner without affecting perfor- 
mance. The technique of multiple supply voltages described 
in section 3.3 was used to determine an optimal supply volt- 
age for lowest operating power, using equation 1 with a value 
of  c¢ = 1.6 which is appropriate for today's 0.13 pm devices. 
The voltage thus determined is of course the ideal case; in 
practice, there will be an overhead due to DC-DC level con- 
version circuits. 

Figure 11 shows the results of slowing down some clock 
domains in a generic fashion; the fetch clock and memory 
clock were slowed down by 10% and the floating point clock 
was slowed by 50%. The energy and power benefits are 
decent but performance losses are substantial (about 18%). 
From this graph, we see that we can apply clock slowdown 
only on a selective basis, after studying the application's char- 
acteristics. 

perh Since there are virtually no floating-point instruc- 
tions in this integer benchmark, we slowed down the FP 
clock by a factor of 3. The performance drop was 9% 
over the base version; the total energy was reduced by 
10.8% and the average power by 18%. 

ijpeg: In this case, we have considered simultaneous 
slowing down the fetch, floating point and memory 
clocks (domains 1, 4 and 5 in Figure 3 (b)). We chose 
to study the impact of slowing down the memory clock 
on the power and performance of  ijpeg since this bench- 
mark has a very low proportion of memory accesses. In 

166 



1.1 

1 

0.9 

0.8 

ID 
C 0.5 
ILl 04 

0.3 

0.2 

0.1 

0 

+ _  

i 
[~] Global clock [~ Register file 
E]Memo~ clock • Rename logic 

[ ]  I=P clock [ ]  L2 cache 
[ ]  Integer clock [ ]  D-cache 
[]Decode clock [ ]  Branch 
[ ]  Fetch c l o c k  predictor 

• [ ]  ALUs [ ]  b-cache 

i l  Memory issue 
t window 

[ ]  FP issue 
window 

[ ]  Integer issue 
W eclow 

> 
" o  

N 
o~ 
E 
0 

Z 

1 

0.9 

0,8 

0.7 

0.6 

0,5 

0.4 

0.3 

0.2 

0.1 

O - -  I 

I ~  Performance 
Energy 
Power 

Figure 10. Breakdown of energy into various macro 
blocks 

Figure 11. Results from selective s lowdown applied 
on three benchmarks 

all cases reported in Figure 12, the fetch clock has been 
slowed down by 10% and the FP clock by 20%, while 
fl)r the memory clock we have considered four cases: no 
slowdown (gals-00), slowdown of 10% (gals-10), 20% 
(gals-20) and 50% (gals-50). Figure 12 shows that we 
can trade off performance for energy savings for this 
benchmark. Energy savings vary between 4 and 13% 
with a performance drop between 15 and 25% when 
compared to the fully synchronous processor. 

gcc: We chose this integer benchmark to apply a slower 
clock to the floating-point queue and units. Since the in- 
struction bandwidth of this benchmark is also low, we 
slowed down the fetch unit by 10%. Figure 13 shows 
the results for performance, power and energy, normal- 
ized to the base case. The numbers marked "gals-1" are 
from the case where the floating-point clock is slower by 
50% and the numbers marked "gals-2" are from the case 
where it slower by a factor of 3. The graph shows that 
gcc can afford to have a slower floating point unit with- 
out too much performance hit. Given scaleable voltage 
supplies, this technique also provides energy savings of 
11% and power savings of 21% with a performance loss 
of 13% when compared to the fully synchronous proces- 
sor. 

To compare the capability of the GALS processor to trade 
off power for performance, we have also provided the nor- 
malized energy of the base (synchronous) processor when run 
at a slower clock (and lower voltage) that would exhibit an 
equivalent performance penalty (the column labeled "ideal" 
in Figures 12 and 13). It can be seen that by slowing down 
the floating-point clock domain, the GALS processor is able 

to trade off performance for energy in case of the gcc bench- 
mark. Figure 12 shows that slowing down the memory clock 
does not lead to a good performance-energy tradeoff for the 
ijpeg benchmark. Hence the extent of the tradeoff we can 
achieve by slowing down various clock domains is dictated 
by the nature of the application. 

Overall, our experimental evidence shows that naive 
GALS implementations (with all clocks running at the same 
frequency) may not necessarily be very energy efficient as 
claimed previously. Instead, the increased flexibility of run- 
ning local clocks at different speeds (and thus different volt- 
ages) offers a viable solution for energy aware computing un- 
der the increasing pressure of handling clock skew and distri- 
bution issues. 

6 Conclusion 

Our modeling and simulation setup has given direct com- 
parisons of power and performance of GALS systems against 
those of synchronous systems. Our experimental evidence 
shows that the overhead associated with GALS processors 
renders them inefficient; hence eliminating the global clock 
is not in itself a solution for low power. However, com- 
bined with intelligent fine-tuning of clock frequency and sup- 
ply voltage, GALS systems can provide some power benefits. 
Clocking smaller areas will mean smaller skew values and 
hence faster clocks; we have not modeled such effects in this 
work because skew estimates require extensive physical de- 
sign. Besides, having independent clock domains eliminates 
the need for balanced pipelines and could provide more av- 
enues for fine-tuning performance. 

Since clock distribution issues may necessitate the prac- 
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rice of GALS design in the future, studies on performance 
enhancemen t  in GALS systems are worthwhile.  Further  stud- 
ies in this direction could involve la tency-hiding techniques 

like mult i threaded execution in hardware. 
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