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I. INTRODUCTION

Many situations exist in which the human control of a
robot or machine can be difficult. For individuals with cer-
tain motor impairments—like spasticity or paralysis—driving
powered wheelchairs can be challenging if not impossible
[9], navigating telepresence robots is made all the more
difficult by the reduced embodiment experienced by the user,
and controlling machines that have more degrees of freedom
(DoF) than the control interface, (e.g. a 6-DoF robot arm
with a 3-DoF joystick) can be cumbersome. These situations
can all benefit from introducing automation to assist the user
in accomplishing difficult tasks. This assistance can come
in many forms, from corrective inputs augmenting the user
input to the complete assumption of control by the automated
process. Understanding when and how much assistance to
provide can be enhanced by an accurate estimate of the goal
the the human might be trying to achieve. Research into
user intent prediction and goal estimation aims to address
this problem, which remains an open research area.

In order to produce an estimate of a user’s intended goal,
the goal hypotheses can come from analyzing the environ-
ment [6], modelling the user’s control inputs to predict what
controls they might issue to reach a goal [7], [8], using
inverse optimal control to learn a cost function that captures
the user’s behavior and comparing plans to different goals
using the learned cost function [5], or confidence metrics
based on inverse models of robot state [2].

In our proposed framework, we combine the environmen-
tal structure via Voronoi graphs [1], which provide a global
context by identifying homotopically distinct paths to global
goals, with a general local driving model to identify the
intended local subgoals represented by nodes in the Voronoi
graph. In this preliminary work we have implemented the
local model as a Gaussian Mixture Model (GMM), and use
Gaussian Mixture Regression (GMR) to estimate the proba-
bility that a local goal is the target, given some input (e.g.
user commands or robot state). The result is a probabilistic
representation of the goals a user might be trying to achieve.
Prior research in this area has both used graph representations
of the environment as well as driving models of individual
users [3]. One aspect in which our work differs is in the
development of a general, user-agnostic driving model for
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local goals, combined with a graph representation of the
environment for global context. The result is a framework
for estimating the intended goal of a user without requiring
training for specific individuals or an a priori map.

This work is developed specifically in support of research
in the assistive control of powered wheelchairs. In this
context, global goals might include doorways for traversing,
tables for docking or ramps for boarding a vehicle in addition
to many others. The perception of doorways and safe docking
locations at tables has been developed as a part of the larger
scope of our smart wheelchair research [4]. Our framework
would be appropriate to extend to other domains such as
telepresence robots or robot arm teleoperation.

II. PROPOSED FRAMEWORK AND PROOF OF CONCEPT

Our framework consists of two major components: the
global context provided by a Voronoi graph of the current
map, and a local model for estimating the probability that a
local subgoal (i.e. any Voronoi node adjacent to the Voronoi
cell occupied by the robot) is the intended subgoal. The local
subgoals then serve as the starting points of a search of the
Voronoi graph in which the global goals are the end points.

We evaluated the algorithm in a simulated environment
mirroring a lab setting (Figure 2). Four global goals were
placed in the scene, two in doorways and two at desks. The
user was asked to drive to a particular goal and the estimated
intended goal was recorded during the task execution.

A. Global Context

Paths are homotopically distinct when there is no con-
tinuous transformation between them. This property allows
for a more compact representation of meaningful paths and
decision points (i.e. Voronoi nodes) without encoding the
infinite number of paths that can occur between two points.

Voronoi graphs provide a convenient method for identi-
fying homotopically distinct paths that exist in a map. The
edges of Voronoi graphs are equidistant from the two nearest
obstacles, and the nodes of Voronoi graphs are equidistant
from the three nearest obstacles. Areas enclosed by Voronoi
edges are known as Voronoi regions. Figure 2 inset shows
an example of a Voronoi graph with the goals inserted in to
the graph, shown as green dots.

B. Local Model

The local model in our framework is built as a Gaussian
Mixture Model (GMM). A weighted mixture of Gaussian
distributions is fit to a series of training data ξ = [ξi; ξo].

P (ξ|θ) =

K∑
k=1

wkN (ξi, ξo;θk) (1)



Fig. 1. Ego-centric coordinates ξ of goal g used in the proof-of-concept,
local model formulation. Curvature is calculated using the commanded
rotational velocity ω and commanded linear velocity v.

where ξi is the input, ξo is the output, K is the number
of Gaussian components and θk contains the prior w, mean
µ, and covariance Σ for the kth Gaussian component. The
parameters θ are estimated with Expectation Maximization
on a dataset of expert demonstrations driving to several goals.

With the parameters of the GMM estimated, GMR is used
to compute the resulting conditional probability distribution,
which determines the likelihood that the output data ξo was
generated by the GMM, given the input data ξi:

P (ξo|ξi;θ) ∼ N (µ̂, Σ̂) (2)

In our proof-of-concept formulation for the local model,
the input data ξi is the egocentric position of a subgoal
(Figure 1), which contains the distance from the robot to the
subgoal ξdi , the difference between the robot heading and
the heading to the subgoal ξψi , and the difference between
the robot heading and the subgoal orientation ξφi . The output
data ξo, is the current user-commanded curvature.

We assessed this proof-of-concept formulation in a pilot
user study with 5 participants, each performing 12 trials.
The results of this pilot study were encouraging, with the
estimate of the user’s goal frequently matching the true
goal. However, the study also highlighted many areas for
improvement. For example, when close to local subgoals, the
user does not actually tend to drive to the subgoal with much
precision since the subgoal, being a nearby Voronoi node, is
an artificial construct not necessarily apparent to the user,
whereas the global goal—such as a doorway—is a natural
goal that could be perceived by both user and robot. This
causes the local model to give the intended local subgoal
a low probability due to the large swing in the heading to
subgoal component of the input data, resulting in undesirable
behavior near the Voronoi edges.

An alternative formulation which we are currently devel-
oping is to use the distance to the goal as the input data
ξi, and as the output data ξo the heading to goal and head-
ing of goal components of the egocentric polar coordinate
transformation of the local subgoal. The hypothesis is that
the model will encode the high variance in the heading
parameters seen when close to the subgoal, which can then
be leveraged in the probability computation. An additional
benefit is that by removing the user-commanded curvature
from the formulation, the number of demonstrations required
is reduced considerably. The trade-off is that the intent
estimation will lag slightly since the probabilities will update
only after the robot moves.

Fig. 2. A simulated lab environment, inset with a voronoi segmentation.

C. Combining the Local Model with Global Context

The last step is to apply the probability distribution over
local subgoals to the global goals. In our proof-of-concept
formulation, the shortest path from the current voronoi region
to each global goal is found. Then each global goal is simply
assigned the probability of the local subgoal that starts the
shortest path to that global goal. Our pilot study highlighted
the issue that this formulation suffered poor performance
when the user’s chosen path did not correspond to the
shortest path along the Voronoi edges. To address this, an
alternative formulation currently under development is to
build a true probability distribution weighted by path length
over all paths to a global goal.

III. CONCLUSION

Accurate estimation of user intent has the potential to im-
prove the performance of assistive technologies that automate
some portion of task execution. This work presents a frame-
work that combines global context about the environment
with a local probabilistic model to make estimates about
user intent. This initial work has shown both promise and
directions for improvement. The alternative formulations for
the local model and application to the global goals, identi-
fied in Section II, are under active development, and their
evaluation will be included in the workshop presentation.
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