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I. INTRODUCTION

Assistive devices, like powered wheelchairs and other mobility
aids, have greatly enhanced the quality of life for individuals with
disabilities. While assistive robotic arms increase the accessibility of
physical manipulation tasks, they are difficult to teleoperate effec-
tively. When controlling an arm with many degrees of freedom using
a lower-dimensional input, even simple tasks can become tedious [1]
and cognitively burdensome [2]. A common method for dealing with
the mismatch in dimensionality is through modal control, in which
the user selects one of several control modes, each corresponding
to some mapping from input dimensions to a subset of the arm’s
degrees of freedom. This incurs added complexities to predicting
users’ intentions, but also introduces interesting opportunities for
assistance.

In this paper, we will describe how users typically employ assistive
robotic arms under modal control, discuss the results of interviews
with users to determine their opinions on this method of controlling
the arm, propose some possible assistance techniques in this domain,
and lay out our plan to test the effectiveness of each technique.

II. MoDAL CONTROL

We will discuss what we mean by the term modal control. When
mapping from a low-dimensional input onto a higher-DOF robotic
arm, in order to get a full specification of the motion, the extra DOFs
must be accounted for. The naive solution is to control each DOF
independently. Extending this, we can give the user control of some
subset of the configuration space. In both scenarios, users employ a
button or signal to cycle through available mappings from input- to
output-space. Because the user is choosing between these different
“modes,” we call this “modal control.”

The number of modes required grows quickly for complicated
robots. Even if the control input is specified by the Cartesian location
and orientation of the end effector, 6 DOFs are needed. Many such
arms will require an additional DOF to close and open the end
manipulator. For a 2-DOF input, such as the joystick that might be
used to control an electric wheelchair, this requires at least 4 different
control modes, and some method for signaling mode transitions. One
example partition of the space would be to have an X-Y mode, a Z-
roll mode, a pitch-yaw mode, and a grasp-release mode. There exist
several possible mode partitions, and some may be better or worse
for certain applications.

III. USER-CENTRIC DESIGN

Motivated by the high rejection rate among assistive technologies,
we employ a user-centric design wherein we interviewed users of
the JACO assistive robot arm to assess their needs. Studies are
often limited to asking users about potential experiences and future
abilities [6], [5], without giving these users the opportunity to work
with the technology for an extended period of time. The JACO
has been commercially released and is currently used by over 150
people. There is thus a user population rich in real-world experiences
controlling a robotic arm.

We contacted English speakers who are currently living with the
JACO arm, and asked them about their general experience with the
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Fig. 1: A recorded trajectory showing modal control on an arm similar
to the JACO: z-y-z is red, ¥-0-¢ is green, and gripper is blue

arm, what they use it for, and what they would like to use it for. We
also interviewed employees of Kinova, the makers of the JACO. Every
use has been trained by these employees, and they have considered
many features in the JACO’s interface design. Talking with employees
also gave us some exposure to the larger user population than did the
limited number of users we spoke with.

Through the interviews, we determined that speed is a governing
factor in determining the success of a feature: even if it is feasible to
use the arm to eat from a plate, if it takes an hour for each bite, this
is not a practical or acceptable solution and will not be used in real
life. Conversely, certain tasks require varying types and degrees of
precision. Moving a cup of coffee without spilling requires one kind
of precision, while waving to a friend, a highly personalized motion,
requires another.

All of the users expressed difficulty concerning the mode switching
process. The number of small adjustments needed while controlling
the arm requires switching modes often. Keeping track of what control



mode the arm is in requires noticeable cognitive effort, and even
pressing a button to change modes is difficult or impossible for
some users. Based on this finding, we are investigating assistance
techniques that can be used to reduce the occurrence of mode
switching.

IV. MODAL ASSISTANCE CHALLENGES

We apply policy blending as a way to keep the user in control while
still providing assistance. Policy blending is a general framework that
can describe several experiments looking at shared control. A detailed
table of how related work fit into this framework can be found in [3].
Policy blending [4] mixes the optimal action under the robot’s policy
P with the optimal action under the user’s policy U at every time step
via an arbitration function «, which is determined by user preference
and scales with the robot’s confidence in its prediction as shown in
(1). This introduces some difficulties when applied to modal control.

(1—a)U +aP (1)

With modal control, the actions from the user’s policy and the
robot’s policy have different dimensions. There are two clear ways
of handling this mismatch: (a) limit the robot’s policy P to taking
actions only in the user’s current control mode, or (b) allow the robot’s
policy to span the full action space and expand the user’s action in
the non-controlled dimensions.

Another assistance technique, which can be implemented alongside
either policy-blending options (a) or (b), would be to have the robot
predict when the user is likely to change control modes, and then
perform the switch for the user.

All of these assistance techniques are sensitive to the quality of the
predictions made about the user’s goals. If the robot’s prediction is
incorrect but has a high confidence value, the human will not be able
to overpower the “assistive” action prescribed by the robot’s policy.
This will occur with higher probability in control method (b), wherein
the robot can exert its predicted intent on more dimensions than are
available for the user to control.

The difficulties with modal assistance that we would like to explore
can be summarized in the following research questions:

1) Do users prefer to have the robot assist in all dimensions or
only those which the user also controls?

2) How do users react to the robot performing mode switching?

3) How does a wrong prediction effect the users’ preference for
type of assistance?

V. RESEARCH PLAN

To implement the assistance methods outlined in IV, we need a
means of predicting the user’s goal, and a policy directing the robot
to an arbitrary goal. Each of the assistance methods and failure cases
will be applied in a within-subjects user study.

A. Learning the User’s Policy for Prediction

We have created a testbed with the intention of first modeling users’
motion without any mode switching. For this setup we needed to
constrain the task in such a way that all inputs can be specified using
a 3-axis joystick. We will ask users to control a robot arm to press
buttons, each at a different x, y, and z location relative to the robot
arm. The orientation of the hand is defined ahead of time and remains
the same throughout the trials, and the user has control over only the
z,y,and z velocities. Some interesting questions include how many
axes are used simultaneously, and how much the trajectories differ
from a canonical straight-line path.

Once the user’s policy within a mode is modeled, we will run
another experiment requiring two control modes. We will examine
the cost of switching modes, and how mode switching modifies the
user’s policy. With a policy describing the user’s actions, we can
perform prediction by determining which goal minimizes the cost of
the user’s current trajectory [8].

Given a predicted goal, the robot can employ any motion planning
algorithm to acquire a path to the predicted goal. The ideal policy is
that of the user if he or she had full control over all degrees of the
system at all times. Since we do not have direct access to this policy,
a cost function can be constructed from the lower-dimensional user
trajectories via maximum entropy inverse optimal control [7]. The
robot’s policy can then be determined from the cost function in a
full-dimensional action space.

B. Modal Assistance Experiments

We will run a within-subjects study. The two independent measures
are the assistance type and whether the robot succeeds or fails in
its prediction. The objective dependent measures will be the time
required for task completion, the magnitude of the difference between
the actions of the user and those of the robot, and the number of mode
switches. The subjective dependent measures will be a self-reported
survey afterward in which the user will be asked about their prefer-
ence for assistance given successful and unsuccessful prediction, and
other qualitative responses about the assistance methods.

VI. CONCLUSION

Shared control offers an opportunity to increase the efficiency of
task performance when the user’s input is limited or unreliable in
some way. Due to the user-oriented nature of shared control, the
different techniques for assistance need to ultimately be evaluated
by users for their preference as well as by performance metrics. We
will test two policy-blending techniques, under successful and failed
prediction, and evaluate them both objectively and subjectively.
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