COMPUTER SCIENCE SERIES

THE

PSYCHOLOGY
~COMPUTER
PROGRAMMING

Gerald M \Weinoerg

SCHOOL OF ADVANCED TECHNOLOGY
STATE UNIVERSITY OF NEW YORK
BIN.GHAMTON, NEW YORK

VAN NOSTRAND REINHOLD COMPANY

NEW YORK CINCINNATI ~ ATLANTA DALLAS SAN FRANCISCO
LONDON TORONTO MELBOURNE

Scanned with CamScanner

THE
PROGRAMMING
GROUP

he study of the programming group is important for an understand-
ing of the other types of programming organization. Even when
there is a formal organization of the programmers into teams and
projects, informal connections arise much as they do in an “un-
structured” group. Indeed, the first lesson we must learn from social
psychology is the difference between formal and informal groups.

FORMAL AND INFORMAL ORGANIZATION

is a nice toy for a manager, but little program-
mong programmers had

rganization charts
who have come

The organization chart
ming work would ever get done if interactions a
to follow its narrow, straight lines. Perhaps because O
look much like flow diagrams, programming managers

47

Scanned with CamScanner

48 Programming as 8 Social Activity
e ranks seem to place too much confidence in

up through th . .
ss formal mechanisms which they themselyeg USeq ¢ Fathg,

than in the le

cessfully when they were in the pits. But human interactions g 0 sy
narrow, never straight, and hardly ever in the directions shown a’:’e Never
Organ;.

zation charts. Many serious mistakes have been made in j
formal structure was the only structure in an organization,

In projects, of course, much of the informal structure is determ;
the structure of the work, and thus may follow organization Chan':ed by
or less closely, depending on how well the project is organizeq BmoTe
a computing center, even if it is completely at the service of i"-div::jt in
programmers, an informal structure always grows to correct ang cOual
plement the work of whatever formal structure exists. Sometimes, i t:l'
powers-that-be are sufficiently wise, innovations in the informal StTUCtur:
can be implemented formally, although not always as exact equivalents,

An example of this type took place in the computing center of a ¢op.
sulting engineering firm. Jobs were run on a remote batch basis, ang
most programmers were spread around the three buildings near to the
group with which they worked. Turnaround time was irregular, and there
was no reliable way to determine in advance when a job would come
out. The number of the last job processed was posted on a board outside
the return window, but programmers from remote offices could easily
waste half an hour coming to read the board and find out that their job
was not ready.

As it happened, one of the secretaries had an office whose placement
permitted her to see the board out the open door, without moving from
her desk. She was an attractive young thing, and one of the programmers
happened to call her for a date at a time when he was waiting for a job
to be returned. When they had talked for a while, she commented that he
must have work to return to, but he replied that he was waiting for a job
anyway. “Oh,” she said innocently, “what number is it? | can see the
board from here.” With that remark began a service whose existence
gradually became known to all the outlying programmers. It was such a
good service, in fact, that the secretary soon had difficulty carrying out
her other duties. In this way, this informal mechanism finally came to the
attention of the administration.

Wisely acknowledging that the service could not just be cut off, the
administration decided to inaugurate a special inquiry number over which
one could hear a tape recording of the latest number posted. The man-
agement was even wise enough to use the secretary’s old extension—
although the telephone company gave some resistance before this was
accomplished. Thus, a rather smooth replacement of a rather inefficient,

magining that

but useful, informal service was made—with the concomitant gain in
secretarial time for more conventional duties.
It should be noted, however, that the new formal system never com-
4_4

Scanned with CamScanner

The Programming Group 49

laced the old, informal one. The recordi
pleteg ;Et' intervals of thirty minutes, so that it was :g:sizzeforrnade ber
orlé posted on the board as much as half an hour before bein " panber
\ ‘elephone. For ordinary circumstances, this proved sufﬁciengtj—n-gtjeti e

uting center, somebody always has extraordinary requiremen y
when @ programmer was really in a hurry for a job, he would I’ents.
ihe old system and call the secretary. Now, however, her workl‘;?(:
o ufficiently decreased SO as n?t to affect her other work, and so the
tem has remained unchanged, in all probability, to this day. Besides

she enioyed tallking to all these bright young programmers—and they
et uS admit, enjoyed talking to her. ’

Not all conflicts between the formal and informal have such happy
endings. In this case, the administration of the computing center recog-
nized the function that the informal organization was serving; but in other
cases, they might not even be aware of the existence of the function. A
case in point occurred at a large university computing center. Because
so many of the programmers were students who had no offices, a large
common space was provided near the return window, so that the students
and other users could work on their programming problems. In the ad-
joining room, the center provided a consulting service for difficult prob-
lems, staffed by two graduate assistants.

At one end of the common room was a collection of vending machines
—coffee, coke, candy, and what-have-you. Although the room was quite
large, the noise from the revelers congregating at the machines often
became more than some of the workers could bear. Finally, a pair of
serious-minded students appointed themselves as a committee and went
to the computing center manager. He, of course, had never personally
gone into the common room, SO when he went to investigate their com-
plaint, he was appalled at the goings-on at the far end. Without more
than fifteen seconds of observation and consideration, he went back to
his office and inaugurated action to have the machines removed to some
remote spot.

The week after the machines had been removed—and signs urging
quiet had been posted all around—the manager received another delega-
tion. This one was much larger and much better organized. They had
come to complain about the lack of consulting service; and, indeed,
when he went to look for himself, he saw two long lines extending out of
:Zea:Ensulting room into the common room. He.Spoke to the ccfnsul.tantts
but thethem W_hy they were suddenly so slow in servicing their ;Iisz_s_.
i not ¥at(:ld him that they were working as fast as they fjadte"e;'ot omore
people ns er. For some reason, they said, there were just a

The meed'ng advice than there used to be. .
increase;nager spent two weeks checking for a possible

load, but all courses and other users were carryin

e source of the
g on normally.

Scanned with CamScanner

50 Programming as a Social Activity

still, the load remai"‘?d’ an.d el were °°mplaining th

not able to finish th.elr.asmgnments. Finally, he Set g ra - they W
in sociology to interweu.fmg the students queueq Up in the . dUate Stuqere
After some time, he discovered the source of the prob[:nsumng 1inem
vending machines! : M1t gy tes,

When the vending machines had been in the commop he
crowd always hovered around them—but not Particylqy, rfoo 2y
as the manager had so quickly as§umed. True, the Or fol.q. o
and chatting, but they were chatting about thej,
behavior of a student when he arrived at the COmDUting i
pick up his output and head for the coffee machine, There, wht'?rvf’
coffee, he could have a first look at the program ang also shole.SI
buddies who might be standing around. Since most of fhi stu: o pig
lems were similar, the chances were very high that he coulg ﬁnd*:n Pro.
who knew what was wrong with his program right there at the |
machines. Through this informal organization, the formal °°"Su1ti:n
chanism was shunted, and its load was reduced to a leve] itg S
reasonably handle. Coulq

By moving out the vending machines, the mana
focus of this informal structure and put the res
sultants. Unhappily, he could not easily believe that this was the
the overload, so instead of restoring the machines, he tried incre
number of consultants. The consultants, however,
they were having to deal with; and eventually the
abandoned altogether, for lack of people willing t
served, this computing center was furnishing cons
channels—with students scurrying around from o
could find one of the staff programmers to answer their trivial questions.
Where it will all end, it's hard to say; but we can be sure that the students
will always get their questions answered—at whatever the cost.

The point of these stories is that informal mechanisms always exist and
it is dangerous to change things without understanding them, lest you
derange some smoothly operating system which you will not be able to
replace at similar cost. Many such derangements occur through a change
in the physical layout of things—a change which is so common aroynd
computing centers that it will pay us to spend a few words on the relatio™
ship between physical structure and social structure.

ger had broke

. N up t

his con-
Cause of

asing the
complained of the trivia

consulting service was
0 do it. When last gp.
ulting through informg
ffice to office unti they

PHYSICAL ENVIRONMENT AND
SOCIAL ORGANIZATION

We all know that

, uantity
physical surroundings affect the quality and @
of our work. What

§ effeCts 0
we are alluding to here, however, is not the

Scanned with CamScanner

The Programming Group 51

noise, light, heat, and other factors,
industrial psychologists. No doubt t
gained from following the design cri
programmers’ working quarters. (Som

pressing effect that the all-too-common haif partitions have on program-
mer productivity. They manage to cut off all usefuyl communication while
permitting all disturbing sound and movement to penetrate.) What we
are concerned with is how the layout of work Space affects the pattern
of social interaction which in turn influences the work that is done.

As a simple example, consider the establishment which replaced its
ancient elevators with spanking new automatic ones. This was most un-
fortunate for the programmers, for the old elevator operator had run an
informal pickup and delivery service for them between the programming
floor—the eighth—and the machine room—the basement. Of course,
nobody could justify hiring a messenger just for going from the eighth
floor to the basement, so the programmers lost a lot of productive time.
Another function this operator served was locator of missing persons.
With the machine room on one floor, keypunch room on another, and
programmers’ offices on a third, chances of finding a missing programmer
in the first place you looked were less than fifty-fifty. The elevator opera-
tor, however, could be relied upon to know immediately on which floor
a given person could be found. With these two losses—plus the loss of
other services such as rerouting of misdelivered mail and relaying of
important messages—the new automatic elevators proved to be a net loss,
even though the elevator service itself seemed a bit faster.

Although the switch to automatic elevators is perhaps more rare, the
moving of offices is an almost daily occurrence in some shops. As long
as the programmers all remain together, this often has the salutary
effect of making two people aware of each other's existence. In the
old days, this function was often accomplished in the anteroom of the
machine room, where we all queued up to take our fifteen minutes of
on-line debugging. A typical conversation—circa 1956—went like this:

“What's he doing in there so long? I've got some really important work
to do—but there’s just one more bug.”

“He’s debugging FORTRAN.”

“FOR-what?"

“FORTRAN. Stands for Formula Translation. They claim you’ll be able
to write programs as mathematical formulas and this program will trans-
late them into machine code automatically.”

“Come on. You're kidding?”’

“That's what they say. As for me, | suppose it can be done, but it can’t
be as efficient as hand coding. It won't sell.”

“Well, it's sure using a lot of machine time. He looks like he’s playing

which have been much studied by
here are important benefits to be
teria developed in putting together
eone should definitely study the de-

Scanned with CamScanner

82 Programming as a Soclal Activity l

the organ there, flipping those keys up ang down
better way."” Therg Ough,
“There is.” to be
“Yeah? What'’s that?” q
“I'm working on it right now. We're doin
the only machine is here, 8o we have to ¢o est
a Monitor System.” bug. e t, by
““Monitor System?”’ Callg,
“Yes, it's sort of an automatic operator, Takes the
from the machine. For example, I've got thirty jobs herprogrammer
to run in my fifteen minute shot.” ® Which p,,
“Thirty? You're pulling my leg!” Soing
“No, | mean it. By eliminating the operator,
speedup—and eliminate set-up and tear-down ti
“Well, good luck. But | don’t see how I'm going to dep,
if | can’t be at the console. As it is I'm going crazy Waitign ™Y Prograp,
what was that name?—FORTRAN guys. See you later, I'm |, for thege
A surprising amount of useful information was transminedpinow,'-,
Operating systems eliminated this social structure in the Sar: thig Way,
automatic elevators eliminated the other. Still, if there is 5 COm; way
right next to the place where computer output is returned, USefu?n r.c:Pm
can take place there. Personalized delivery services, however t:mu
isolate the programmer from this type of interaction, ang termina’I Sy:td to
for remote-job-entry and exit may make his .

' ' ‘ isolation worse, This aspeet
of terminal operations is probably going to be a curse, not a blessing

9 it on tpe
me here to de

We achigye af
me, tog.” ma&iic

ERROR AND EGO

Many programmers who have read this far will be surprised at the
emphasis placed on the social interaction among programmers. Pro-
gramming—perhaps more than any other profession—is an individual
activity, depending on the abilities of the programmer himself, and not
upon others. What difference can it make how many other programmers
you run into during the day? If asked, most programmers would probably
say they preferred to work alone in a place where they wouldn't be
disturbed by other people.

The ideas expressed in the preceding paragraph are possibly the ok
formidable barrier to improved programming that we shall encount.er'
First of all, if this is indeed the image generally held of the programm!:§
profession, then people will be attracted to, or repelled from, ente;:ng
the profession according to their preference for working alone or worrI :
with others. Social psychologists tell us that there are different perse

4

Scanned with CamScanner

The Programming Group 53

types—-something we all knew, but which is nice to have stamped with
authority. Among the general personality traits is one which is measured
along three “dimensions”—whether a person is “compliant,” “aggres-
sive,” or ‘‘detached.” The compliant type is characterized by the attitude
of liking to “work with people and be helpful.” The aggressive type wants

to “earn money and prestige,” and the detached type wants to “be left
to myself to be creative.”

Now, every person contains a mixture of these attitudes, but most
people lean more heavily in one direction than the others. There is no
doubt that the majority of people in programming today lean in the
“detached” direction, both by personal choice and because hiring policies
for programmers are often directed toward finding such people. And,
to a great extent, this is a good choice, because a great deal of program-
ming work is “alone and creative.”

Like most good things, however, the “detachment” of programmers is
often overdeveloped. Although they are detached from people, they are
attached to their programs. Indeed, their programs often become exten-
sions of themselves—a fact which is verified in the abominable practice
of attaching one’s name to the program itself—as in Jules’ Own Version
of Algol, better known as JOVIAL. But even when the program is not
officially blessed with the name of its creator, programmers know whose
program it is.

Well, what is wrong with “owning” programs? Artists “own” paintings;
authors “own” books; architects “own” buildings. Don’t these attributions
lead to admiration and emulation of good workers by lesser ones? Isn’t it
useful to have an author’'s name on a book so we have a better idea of
what to expect when we read it? And wouldn’t the same apply to pro-
grams? Perhaps it would—if people read programs, but we know that
they do not. Thus, the admiration of individual programmers cannot lead
to an emulation of their work, but only to an affectation of their manner-
isms. This is the same phenomenon we see in “art colonies,” where every-
one knows how to look like an artist, but few, if any, know how to paint
like one. _

The real difficulty with “property-oriented” programming arises from
another source. When we think a painting or a novel or a building is in-
ferior, that is a matter of taste. When we think a program is inferior—in
spite of the difficulties we know lurk behind the question of ‘“good
programming”—that is a matter at least potentially susceptible to objec-
tive proof or disproof. At the very least, we can put the program on the
machine and see what comes out. An artist can dismiss the opinions of
a critic if they do not please him, but can a programmer dismiss the
judgment of the computer?

On the surface, it would seem that the judgment of the computer is

Scanned with CamScanner

N

54 pProgramming as a Social Activity
indisputable, and if this were truly so, the attach
to his programs would have serious FOHS_equen
When the computer revealeq 2 b 1o '.n.h's Program, the pfelf*irnage
would have to reason somgthmg !nke this: | Og’amme;
“This program Is def'ectlve. This program is pa of m, o
of myself, even carrying my name..l am defectiyg ®Xleng,,
But the very harshness of this self-judgment means gy i
carried out. . "
Starting with the work of the social psychologist Festin
of interesting experiments have been perfor'rr?ed to establjgp, t ,ea nu!"ber
a psychological phenomef\on called ‘“‘cognitive disso
experiment in cognitive dissonance goes something

Mment o 8

Pro
°8S for g gra""her

‘dom

Nance» , Aty o
. g [.
like this: Bsicy

Two groups of subjects are asked t_o write an essay arguing i favor

point with which they feel strong_; disagreement. 'Ope group is pajgq e S0mg
apiece to write this argument against thc?:r OWN opinions, the other i$ paig tdallar
dollars apiece. At the end of the experiment, the Subjects are retesteq onwiem?
opinions of the matter. Whereas “common sense” woylqg say that e twhe"
dollar subjects—having been paid more to change their minds—wgy, d be I:nty
likely to change their opinions, cognitive dissonance theory predicts thyy N :re
be the other group which will change the most. Dozens of eXperiments haﬂl
confirmed the predictions of the theory. v

The argument behind cognitive dissonance theor
the experiment just outlined, both groups of subje
form an act—writing an essay against their own opinions—which they
would not under ordinary circumstances like to do, Arguing for what ong
does not believe is classed as “insincerity” or “hypocrisy,” neither of
which is highly valued in our society. Therefore, a dissonance situation
is created. The subject’s self-image as a sincere person is challenged
by the objective fact of his having written the essay. Dissonance, accord-
ing to the theory, is an uncomfortable and unstable state for human be-
ings, and must therefore be quickly resolved in one way or another. To
resolve a dissonance, one factor or another contributing to it must be
made to yield. Which factor depends on the situation, but, generally
speaking, it will not be the person’s self-image. That manages to be
Preéserved through the most miraculous arguments.

Now, in the experiments cited, the twenty dollar subjects have an easy
resolution of their dissonance. “Of course,” they can say to themselves
Or to anyone who might ask, | didn’t really believe those arguments. |
!ust did it for the money."” Although taking money to make such arguments
'S Not altogether the most admirable trait, it is much better than actual
holding the beliefs i Question. But look at the quandry of the dqll::
group. Even for poor college students—and subjects in psychologic

y is quite simple,
Cts have had 1o per-

Scanned with CamScanner

The Programming Group 85

experiments are almost always poor college students—one dollar is not
a significant amount of money. Thus, the argument of the other group
does not carry the ring of conviction for them, and the dissonance must
be resolved elsewhere. For many, at least, the easiest resolution is to
come to admit that there is really something to the other side of the
argument after all, so that writing the essay was not hypocrisy, but simply
an exercise in developing a fair and honest mind, one which is capable
of seeing both sides of a question.

Another application of the theory of cognitive dissonance predicts
what will happen when people have made some large commitment, such
as the purchase of a car. If a man who has just purchased a Ford is given
a bunch of auto advertisements to read, he spends the majority of his time
reading about Fords. If it was a Chevrolet he purchased, then the Chev-
rolet ads capture his attention. This is an example of anticipating the pos-
sibility of dissonance and avoiding information that might create it. For
if he has just purchased a Ford, he doesn’t want to find out that Chevrolet
is the better car, and the best way to do that is to avoid reading the
Chevrolet ads. In the Ford ads, he is not likely to find anything that will
convince him that he is anything but the wisest of consumers.

Now, what cognitive dissonance has to do with our programming con-
flict should be vividly clear. A programmer who truly sees his program
as an extension of his own ego is not going to be trying to find all the
errors in that program. On the contrary, he is going to be trying to prove
that the program is correct—even if this means the oversight of errors
which are monstrous to another eye. All programmers are familiar with
the symptoms of this dissonance resolution—in others, of course. The
programmer comes down the hall with his output listing and it is very
thin. If he is unable to conceal the failure of his run, he makes some re-
mark such as

“Those keypunch operators did it again.”
or

“The operator put my cards in out of sequence.”
or

“When are we going to get that punch fixed so it duplicates properly?”

There are thousands of variations to these plaints, but the one thing
we never seem to hear is a simple

“l goofed again.”
Of course, where the error is more subtle than a complete failure to get
output—which can hardly be ignored—the resolution of the dissonance
can be made even simpler by merely failing to see that there is an error.
And let there be no mistake about it: the human eye has an almost
infinite capacity for not seeing what it does not want to see. People
who have specialized in debugging other people’s programs can verify

Scanned with CamScanner

N

56 Programming as a Social Activity

this assertion with literally thousands of caseg Progra

their own devices, will ignore the most glaring erroys ;::"lers, -
errors that anyone else can see in an instant, Thus, j . thej, %tﬂth
attack the problem of making good programs, and i We o are gmbuk
at the fundamental level of meeting specifications, rre=.~ Q0ina . 9 o
to do something about the perfectly normal human 1end2 80ing o ;'aﬂ
that ones “own” program is correct in the face of hayq ph nt;y 10 b :::
to the contrary. YSica) evid%

EGOLESS PROGRAMMING

What is to be done about the problem of the ego in
typical text on management would say that the Manag
all his programmers to redouble their efforts to fing
haps he would go around asking them to show him
day. This method, however, would fail by going precise
direction to what our knowledge of psychology woul
average person is going to view such an investigation
Besides, not all programmers have managers—or m
know an error even if they saw one outlined in red.

No, the solution to this problem lies_not in a direct attack—ior attack
can only lead to defense, and defense is what we are trying to eliminate
Instead, the problem of the ego must be overcome by a rostructuringoi-
the social environment and, through this means, a restructuring of the
value system of the programmers in that environment. Before we discuss
how this might be done, let us look at some examples of what has hap-
pened when it has been done—how it affects the programmers and their
programs.

First of all, let no one imagine that such restructuring is the ivory tower
dream of social theorists. Programming groups who have conquered the
ego' problem do exist and have existed from the earliest days of com
puting. John von Neumann himself was perhaps the first programmef
to recognize his inadequacies with respect to examination of his oWn
work. Those who knew him have said that he was constantly asserting
What a lousy programmer he was, and that he incessantly pushed hi
Programs on other people to read for errors and clumsiness. Yet
common image today of von Neumann is of the unparalleled compu™
QO:mus—ﬂawless in his every action. And indeed, there can be _"9 d?:ns
pu:?m?mN:::daT': genius. His very ability to realize his humallt;;‘;;a"

Average o nd shoulders above the average programmer =0 .,

Ple can be trained to accept their humanity—thelr

. . 0
to function like a machine—and to value it and work with others & #

programmingo

O should ey,
their Errol.s' Per.
their errors each
'y in the oppogi,
d dictate, 1o the
asa persona| trial,
anagers who yoy

Scanned with CamScanner

The Programming Group 57

keep it under the kind of control needed if programming is to be success-
ful. Consider the case of Bill G. who was working in one of the early
space tracking systems. His job was to write a simulator which would
simulate the entire network of tracking stations and other real-time inputs.
His system had to check out the rest of the system in real-time without
having to have the worldwide network on-line. The heart of the simulator
was to be a very small and very tight loop, consisting, in fact, of just
thirteen machine instructions. Bill had worked for some time on this loop
and when he finally reached the point of some confidence in it, he began
looking for a critic—the standard practice in this programming group.

Bill found Marilyn B. willing to peruse his code in exchange for his
returning the favor. This was nothing unusual in this group; indeed, no-
body would have thought of going on the machine without such scrutiny
by a second party. Whenever possible an exchange was made, so nobody
would feel in the position of being criticized by someone else. But for
Bill, who was well schooled in this method, the protection of an exchange
was not necessary. His value system, when it came to programming, dic-
tated that secretive, possessive programming was bad and that open,
shared programming was good. Errors that might be found in code he
had written—not “his” code, for that terminology was not used here—
were simply facts to be exposed to investigation with an eye to future
improvement, not attacks on his person.

In this particular instance, Bill had been having one of his “bad pro-
gramming days.” As Marilyn worked and worked over the code—as she
found one error after another—he became more and more amused,
rather than more and more defensive as he might have done had he been
trained as so many of our programmers are. Finally, he emerged from
their conference announcing to the world the startling fact that Marilyn
had been able to find seventeen bugs in only thirteen statements. He
insisted on showing everyone who would listen how this had been
possible. In fact, since the very exercise had proved to him that this was
not his day for coding, he simply spent the rest of the day telling and
retelling the episode in all its hilarious details.

Marilyn, at the same time, did not feel any false confidence in her own
work on the problem, for—she reasoned correctly—where there had
been seventeen errors, there were probably a few more. In particular,
she knew that after a certain amount of time working on the code, she
had internalized it as much as had Bill, even though she had not written
it originally. So she in turn went looking for a critic; and while Bill was
giving everyone an enormous laugh at his expense, Marilyn and others
Mmanaged to find three more errors before the day was over.

As an epilogue to this incident, it should be noted that when this code
was finally put on the computer, no further errors were found, in spite

Scanned with CamScanner

58 Programming as a Social Activity |

of the most diabolical testing possible,
into use in more than a dozen Installat
over a period of at least nine years p
How different might have been the st
found in that code was a wound in hi
stupidity.

This incident is not an isolated case, ang
Why, then, are such groups not more co
of “egoless programming” not more wi
might be invoked to account for the i

In lagt
Sim
ons {or 0al-tim, oulmor
O other grrg,, op‘"ang by
ory hag Bil| o Ovy, , Wy
folt thyy " foy,

8 ride— 0 ;
Pride—ap, adverugom::lh O,
thi "y
8 QrOuD
NSpicuoug? Wh

despreaq? A NUmbg Pracye,

npression that fagy
rare. First of all, many of the successfy| Software firmg :ruch Foupg :rfa
type of interaction, and though they wil| admit 1o it yngg, zibas o Ihi:
ing, they often regard this knowledge as valuable "8ct g

; Quegyi
Propriet on.
Secondly, groups working in this way tend to be remmkmillry Informa“On
stable, so that the programmers we fing wanderi Y Satis

ng { ﬂﬁd ﬁnl
; 9 from 'nstallati
installation are not likely to have come from such g on

group, Mo,
these gypsy programmers—to achieve a Constantly scalatin Sova,
range—must encourage the myth that the best Programming | tg Salary
uct of genius, and nothing else. ® prog.

Another reason these methods are no
has ever experimented on the difference
this method and the method of isolated
experiments have been performed on factors affecting pro
ductivity, but these have suffered first of all from emphasis o
ical aspects of programming, not the social. For example,
made comparing time sharing with batch processing or Ia
language B, because someone is tryin
to develop a time-sharing system or a compiler for language B. The
People who run these experiments seem to take for granted the individual
nature of programming effort—for that is probably the way they have
always operated. Besides, things are complicated enough working with
individuals. When you compare system X and system Y and find out that
90 percent of the variance in your experiment comes from individual
programmer differences, who wants to add the complication and expense
of studying group performance?

An interesting anecdote—which we mentioned briefly in the chapter on
methods—can be told about one of our studies that tried to assess e
difference in programming results obtained when different ngra’_“me‘s
were given slightly different impressions of what they were to‘acmev:;
efficient coding or quick completion. As usual, individual subjects :cial
employed, but one of these subjects—they were all students on sEiiced
three-month course—happened to come from a group that -erhalhe
egoless programming. At a certain point, he came to me and sa!

t better known is
in_quality of work
individual progra

that Nobody
Produceq by
Mmaers, Some
grammer py.
N the mechan.
a study will be

nguage A with
g to prove that he should be allowed

Scanned with CamScanner

The Programming Group 59

had reached the point in his work where he needed someone to look over
what he had done. As the object of the experiments was not to study
differences between group work and individual work, | was forced—
against my own beliefs—to request that the subject try to proceed with-
out outside assistance, which would only add to the variance of the
experiment.

As a sidelight to this incident, it should be noted that this programmer’s
work seemed to the evaluators to be better organized and better executed
than the other four programmers working on the same problem. In dis-
cussing this question with him, he raised the point that he had worked
throughout as he always did in his own group—always with an eye to
making the program clear and understandable to the person or people
who would ultimately have to read it. This insight indicates that all the
advantages of egoless programming are not confined to the detection of
errors, though that was perhaps the earliest and strongest motivation for
adopting the technique. In fact, it might be useful to examine our four
factors in good programming in the light of what effect this method would
have on them.

For meeting specifications, the value is quite clear. On the matter of
scheduling, the effect on the mean time to complete programs is not
immediately evident, but the effect on the variation should be clear from
our example of the bugged simulator. If it is true that programmers
have bad coding days—and this seems supported from a number of
sources—then a piece of code written on one of these days is going to
have an extra long debugging cycle. In the case of Bill G.'s program,
the twenty bugs might have taken several weeks to root out. Moreover,
it seems likely that at least one of them might have survived in the
system past the time when this piece was integrated with other pieces—
in which case the schedule of other parts would have been adversely,
or at least unpredictably, affected.

Not only is the variation in debugging time reduced, but since there
is more than one person familiar with the program, it is easier to get
realistic estimates on the amount of real progress that has been made. It
is not necessary to rely on a single judgment—and of the person least
likely to be unbiased, at that. The adaptability of programs is also im-
proved, for we are assured that at least two people are capable of under-
standing the program. Under certain programming circumstances, this
represents an infinite improvement. Also, the entire work is less sus-
ceptible to being disturbed if one of the involved programmers happens
to be sick, or pregnant, or otherwise missing, as programmers are wont to
be. This not only reduces variations in schedule, but also makes it more
likely that at some time in the future, when the code must be modified,
Someone will be around who knows something about it.

Scanned with CamScanner

60 Programming as a Social Activity

On the question of efficiency, we can make no harg
There certainly seems to be no reason why Progra and fa't"tate
way should be less efficient than other Programs 'gs developed m%
party look at the program, it would seem that we inc}e haVing) in thy
eliminating at least the most obviously inefficient arease the Mlzsc%
efficiency is usually going to be primarily influenc?' althg, ho,:ty‘”
structure chosen. d by the oy

One final advantage of this method lies in the effec ith -
reading the program of someone else, for, if we are COrras 0{11 epeuon
the value of reading programs, he cannot help byt b:gt in By
programmer for the exercise. We shall have more s oome- a
under the heading of programmer training, but it o s’; thig Subjgey
general level of competence of such a group s likely toem_tha:
even in the absence of specific measures for educatiop raise itsgy

CREATING AND MAINTAINING
THE PROGRAMMING ENVIRONMENT

The question of creating such a desirable environment a5 we haye
described ito. different fr.om the question of maintaining such an environ-
ment once it exists. Ma!mten-ance is by far the easier task, for conyer;
an existing group to this philosophy will usually run against the phenom-
enon of “locking” or ‘“fixation” of social structures. Fixation oceurs
whenever a situation creates an environment favorable for maintaining
that situation. For example, an FM tuner can be designed to center itself
on the strongest signal in the vicinity of the tuning knob. Once a station
is captured by this device, only a very strong change can get it off, be-
cause every small tendency to change is met by a compensating action
by the tuner. Such locking occurs in all sorts of systems—physiological,
electronic, biological, but especially for our immediate purposes, social.

One typical computing example of social fixation is the adoption of oné
programming language by an installation. Once the language has been
adopted, a new language has more difficulty making an entry, because
with most of the people using the old language, advantages E_IGC’“e L"
following the beaten path. If one needs advice, it is more easily founo%
If one needs subroutines, they are more likely to exist. Schedmlzis:ep3
computer runs may favor the commonly used language key‘:u:using
will make fewer errors punching familiar coding, and pr ocedures 10
the old language will be smoother and better developed.

In the same way that an installation fixates on a Pro
guage, it can establish a general social environment

: ; ew prog
courages or discourages egoless programming. When afl

y |

Scanned with CamScanner

The Programming Group 61

enters the mileu, his attitudes may be shaped by the reactions of the
others already there. If he goes to somebody for advice and he is
ridiculed for the stupidity of his errors, he is less likely to seek assistance
the next time. If, however, someone comes to him and asks for help in
looking over a program, he is flattered by the implied compliment to his
ability and may not feel so threatened when he has to seek advice. To
a large extent, we behave the way we see people behaving around us,
so a functioning programming group will tend to socialize new members
to its philosophy of programming.

Sometimes the group may have to maintain its philosophy in the face
of a larger threat than the introduction of a new member or two. Ad-
herents of the egoless programming philosophy are frequently subjected
to threatening moves on the part of managers from higher levels in their
organization. Managers tend to select themselves from the ‘“‘aggressive”
component of society and have difficulty appreciating the fact that other
people do not completely share their goals of money and prestige. They
are especially at a loss to understand the smooth functioning of a pro-
gramming group based on mutual respect for individual talent and co-
operation in the common cause. Instead, they tend to view people as
working for money or under threat—as they themselves do.

A particularly pertinent example of the clash between aggressive man-
agement and a compliant-detached programming group occurred in a
software section of one of the computer manufacturers. One group in the
section, acting as a team, had been particularly successful at producing
an entirely new system, which promised to have much market potential.
The achievement of this group was so evident that the management of
the company decided to give them a cash award. In typical management
fashion, they gave the award to the person who had been designated as
the group’s manager. Imagine their bewilderment when he told them that
he could not accept the award unless it was given to all.

His reaction, in view of the way the group shared its work, was per-
fectly correct, but was not understood by the management. Some man-
agers thought that he was maneuvering for more money; others thought
he was trying to set up a “prima donna” group. In any case, it was
decided to force him to accept the award and also to break up the
group—which seemed to have unhealthy ideas. He took the award and
promptly split it equally among all the group members, after which the
group left the company en masse and went to work for an independent
software firm.

In this case, the group protected itself against a great outside threat
by picking up and leaving. Had the management been more aware of
what this group had to offer, and had they been more flexible, they might
have worked out a solution that would have permitted this group to

Scanned with CamScanner

62 Programming as a Social Activity

influence the work of other groups in a favorable

easily done by managers, whcf tend to feel that When)hwaol:; thi .
it is the direct result of the actlon's of some leader of Outst Oets dqm
Even when the manager appreciates the work of the gr:nd'n ahili?:
consistent with his own philosophy to see the pr°dUCtivity up, it A noi
as a property of the group, not as a sum of the °°ntribu:ift Broy
individual members. ong o N
In one interesting case, a group of ten programmeyg had o

in the programming section of a large airframe manUfaciUre,me to Worj
worked together in another firm for about two years, but thétTff_ley hag
decided to centralize its data-processing facilities o the Olher"- A
the country. These programmers had been unwilling to e, Ansm

had received attractive offers from several firms, they decmedreach
with the one that would hire them all. Mass movements of aroups to o
type are not rare, and though management tends to see them asOf thig
sort of conspiracy, they are usually motivated more by the desi::me
continue receiving the fulfillment of working together than any ide to
enormous material gain—such is the powerful influence of a truly recem
tive working environment. P

Some months after this group had moved to the airframe

; manufae.
turer, their new manager happened to meet their former Manager at ,
computer conference and asked him if he had any more People ke

those. Upon being told that he had the entire group, he inquired about
the secret that had been used in finding these people. Their old map
ager could think of nothing special—one girl had been a new college
graduate majoring in Italian, one man had taught mathematics in 3
high school for seven years, one man was a professional engineer, one
girl had been a business school graduate who had worked for several
years as an executive secretary and accountant. Why, he wanted to know,
had the other manager asked?

“I don’t know what it is,” came the honestly puzzled reply, “but since
those people have come to our place, I've discovered that whenever
there is a job that really has to be done right and on time, | give it to
one of them. And | have 300 other programmers, but if | want it done
right, that's who | ask to do it. They must be some kind of geniuses.”
His perception was so obviously colored by what he expected 1o see that
he could not bring himself to understand that whenever he gave a joP
to one member of the group, it was worked on by all of them in their usual
fashion. When they tried to explain their methods to him, he unde!'stoodl
them to be covering up the fact that a few of the members were doing :L
the work and carrying the others, Fortunately, he was not so rigid thaiusa
i to break up the only satisfactory operation he had merely becfe to
he didn't understand how it functioned. Unfortunately, he was unab

Scanned with CamScanner

The Programming Group 63

see how their successful methods' could be lransmitfed to ‘othe.rs in his
roup, so the group remained an isolated poF:ket un.m the time it moved
on—again as a group—to a more ur?de'rs.tandt.ng. environment. .

of course, groups that follow the individualistic sc'hool of programming
also have a way of preserving themselves—as did the rerr!amder of
the programming section at this airframe manufacturer. A single new
member, or even a single new group within so large a group, really has
no chance of converting the social system, even if he is firmly convinced \
of the correctness of his way of doing things. If he comes into an estab-
lished group, he will probably change his ways to theirs, eventur?llly.
though after experiencing more psychological hardship than one might
like. If the group is newly forming, however, as programming groups
often are, and if it is forming from disparate elements, he may struggle
to shape the group to his image and then leave if unsuccessful.

A case in point was Jim A., who was brought onto a newly forming
project in Chicago from a programming center in New York. The group
to which he was assigned was headed by two people who had been
firmly brought up in the egoless programming tradition and who were
determined to propagate that tradition in this project. The group con-
sisted of these two, Jim, and four trainees. On the first day the group
assembled, the group leaders began the indoctrination of the others
into their method of working. It was decided at the beginning that each
of the group members was to have the signature of one of the other
members on his run request before going on the computer with any
job. By this slightly formal method, they hoped to ensure that the group
members would get in the habit of doing what they would come to do
spontaneously later on.

During the meeting, Jim said nothing, but when the trainees had left,
he approached the group leaders. ‘“That’s an interesting idea you have,”
he began, “to help those trainees learn the ropes.”

“Well,” it was patiently explained to him, “it's not just for the trainees.
It's for all of us, so we don’t start slipping into bad habits.”

“You can’t be serious,” Jim laughed. “Why | have more than two
years of experience. / certainly don’t need anyone looking over my
work. What could those trainees possibly teach me?”

Like most prophecies, this one had a way of fulfilling itself, and Jim
managed to evade the falling of other eyes upon his sacred programs
through one device or another. Before very long, his presence in the
group became clearly counterproductive. As he saw the trainees ad-
vancing to do difficult and challenging assignments while he struggled
on alone, he tried ridiculing them for their lack of independence and
ability to think for themselves. His own programs were not up to the
Standard of quality which the rest of the group was producing. When

Scanned with CamScanner

programming &8 a Social Activity ‘

eader finally felt forced to turn over ong gf

“ I
claimed was debugged, or “essentially dgp 8 Progra

whiCh Jim uggedu\ M3
of the trainees to clear up, Jim had more than he coyq take ao Ong
nd

i ﬂed- . A ra.
sgln this case, the social environment of the group hag be

enough to shape the behavior of the traine.es; bu‘t it was not srom,
to counteract Jim's “two years of experience.” As his pearsonaﬁnnugh
not strong enough to carry the group in the direction he felt wag Y way
the situation eventually became I(\tolerable. Perhaps if the group I°"B<:t,
had been more wise and experienced, they would haye BXCusezada.rs
from the group from the beginning, bl:ll the temptation of “two vearhlm
experience” proved their unc!oing—as it has to many others jp, 2 bug
which so sorely lacks experience.

64

the group |

n a‘rﬁng

S of
Negy

SUMMARY

The environment in which programmers work is a rich and Compley
environment, full of human involvement, change, and misleading i
pearances. TO understand that environment, one must understang the
difference between formal and informal structures and the many facy
that shape it, ranging from the physical surroundings to the individyg|
ego. In an ongoing programming shop, the richness of this environmen
gives it a self-maintaining quality which resists changes imposed from
the outside—especially changes imposed without an understanding of
the difference between the formal and the informal. This self-maintenance
is manifest on all social levels, and is neither inherently good nor in-
herently bad. It is merely a fact of programming life.

QUESTIONS

For Managers

1. Do you have an organization chart showing the organization belgw
you and around you? Try taking a copy of this chart and marking—with
wiggly lines—interactions that occur in your organization. Do the
wiggly lines match the straight lines? If so, get out from behind your
desk and find out what is really happening out there.

2. When was the last time you moved peoples’ work locations? Can You'
recall any changed behavior from that move which was not part i(l)
the direct intention of the move? What would you have done different!
if you were planning the move now?

. ink
3. Looking back over your interactions with programmers, can you o

|

Scanned with CamScanner

The Programming Group 65

ou have said that migpt have forced them into dissonant
things ysnuations in which their ego had to be defended? In those
uationS™ as the resolution of the dissonance always in the direction
+ations: 4 or did you experience such reactions as covering up
le delays, rather than correcting for them? How could
ched those situations so as to lessen the dissonance,
ution of the dissonance in directions more useful
f your organization?

or SChedu

a roa
youtohz‘i’reect the resol
of the overall goals 0
L uld you have to do to introduce egoless programming into
wz 2 What resistance would you expect to meet, and how
o deal with it? How long do you think it would take, and

ou
wz::da; the chances of success?
W " |
What is you' honest opinion of people who are not trying to “move up”

©. " our organization, but who seem satisfied with the kind of work
A do and the amount of money they get? To what extent is your
ﬂ-]:\r, influenced by your own feelings for yourself?
vi

For programmers

11f a computing center I?ad perfectly .cor.lsistent turnaro_und, there

" would be no need for an informal organization to produce information
on when jobs are ready. In what gther ways do the variations induced
by the complexity of programming lead to the growth of informal
social structures? Give some examples from your own experience.

2. If you use a terminal system regularly, how do you exchange informa-
tion with other users of the terminal system? Does your terminal
system have an operation which enables you to exchange messages
with other terminal users? If so, how valuable is this facility for real
communication, as opposed to the other methods you use?

3. Do you refer to your work as “my” program? Try passing one week
without using the personal possessive in reference to programs, and
take notes on the effects you observe.

4. Have you ever blamed other people for errors in “your” program?
Have you ever blamed inanimate objects, such as keypunches or
magnetic tapes? How many times were you right in blaming these
people or things?

5. Have you ever blamed “bad luck” for errors in “your” program? How
often? Are other programmers as unlucky as you? If not, why do you
thinks the fates have singled you out for such ill treatment? What sort
of rri?tuals do you think you might follow to appease their anger with
you

BIBLIOGRAPHY

L i
l:rtlﬁ:]s Kevin, The image of the City, Cambridge, M...T. Press, 1960.
Small and insightful book, Lynch explores the ways in which our image of

Scanned with CamScanner

66 Programming as a Social Activity

our physical surroundings influences our lives, A

: ; . Ith
the book contains a mine of information for anmn(;ugh Cast o he
serving the physical environment in which people w(;n:olved i chalevel of o
rK. Ngj it
Wright, Frank Lloyd, An Organic Architecture: The Ares: Qing or ;:::
London, Percy Lund, Humphries & Co., Ltd., 1939 FChitectyy o
Wright, the greatest of all the American architects' ®Mocr,
“form follows function—that physical : ' €Xpounge %,
surroundings hagq { d the th
tasks performed in them, just as a suit has to be 0 be e

- tailored tq fit p'anned tow that

ideas may have become ossified into cliches by now but i it its Wearg, 0 fiy the

to-wear clothing and ready-to-work buildings, the S;ansiti\:n these timeg o, Nt

his thinking about physical surroundings by reading a bit :f vmvanager will r;eady.
r

i f
Goffman, Erving, The Presentation of Self in Everyday js Ight, resh
Doubleday, 1959. €, Gardep, City,
Just as workers are shaped by their physical surroun d r WY,

the image of the social surroundings. But working g":":liss: :}e? 3re shapeq
their image, which is one of the reasons why managers have S‘SO tend t, Shap:
perceiving their true structure. Goffman explores the ways in \L‘:h a.hard time
and groups work at shaping the image they will pres an

e -1 INdivigy,,
comers--something that managers and programmers alikgts!t:;uc;;tifs;s and news.
Hall, Edward T., The Silent Language, Garden City, N.Y., Doubleday 19.5
Hall takes another point of view on the image of organizations ang ‘desc?'b
we acquire our views of the formal and informal structure of the groups lines hpw
we live. Hall's approach yields many insights into the ways Programmers a:v Y
cialized, and also into the ways in which we acquire specific ® so-

' Programmin s
tices that are never taught in courses or books. 9 prac
Festinger, L. A., A Theory of Cognitive Dissonance, Evanston, III., Row, Peterson

1957. '

Festinger's work on cognitive dissonance grew out of an earlier study of what
happens when a group which prophesied the end of the world saw the day arrive
and the world go on. (When Prophecy Fails). Obviously, dissonance theory has a
lot to say to people who work in an environment where prophecy fails each and
every day—especially the prophecy that the program is sure to work this time,
now that the last bug has been removed.

Haire, Mason, Psychology in Management, 2nd ed., New York, McGraw-Hill, 19!64.
Haire's fine little book is a good starting place for managers who have a hard time
understanding how nonmanagers are motivated.

Fano, R. M., and Corbato, F. J., Time-Sharing on Computers, Scientific American,
215 (1966), pp. 128-140. —

In this popular article, the authors allow themselves the luxuty of drt:t;i)glljr;agr piey

tantalizing hints about the society of users, which grows up wutl';.tatgaic i B

puter system. They probably felt, however, that this was nqt a fit top

fessional audience, and they never seem to have followed it up.

Scanned with CamScanner

