
Northwestern University Nov 15, 2011
Electrical Engineering and Computer Science Handout #11
EECS 303: Advanced Digital Design, Fall 11 Due: Nov 22
Prof. Hai Zhou

Lab 4 Finite State Machine Design and Simulation by VHDL

In this lab, you will use Mentor Graphics tools to design, compile, and simulate a finite state machine
using VHDL. The finite state machine you need to design is as follows.

A finite state machine has one input (X) and two outputs (Z1 and Z2). An output
Z1 = 1 occurs every time the input sequence 101 is observed, provided the sequence 011
has never been seen. An output Z2 = 1 occurs every time the input 011 is observed.
Note that once Z2 = 1, Z1 = 1 can never occur. You need to implement the machine in
the Mealy design style.

Based on this description, the interface can be defined as

entity string checker is
port (X, clock: in bit; Z1, Z2: out bit);
end string checker;

First, you need to come up with a state diagram for this machine. That can be one architecture of
string checker. So we can have

architecture diagram of string checker is
--decleration of type and variable
type state is (S0, S1, S2, S3, S4, S5, S6, S7);
begin
process
variable current: state := S0;
begin
-- Please fill in your design
...
end process;
end diagram;

Then, following the sequential circuit design procedure, you need also to come up with a logic
diagram of the machine. So we can also define the other architecture of the string checker to
describe that design.

architecture logic of string checker is
--decleration of signals
signal QA, QB, QC: bit := ’0’;
begin
-- Please fill in your design
...
end logic;

After you complete the two designs, you can include the following test bench to test your designs.



entity test bench is
end;

architecture test1 of test bench is
signal clk, input, diagram Z1, diagram Z2, gate Z1, gate Z2: bit := ’0’;
component string checker
port (X, clock: in bit; Z1, Z2: out bit);
end component;
for U1: string checker use entity work.string checker(diagram);
for U2: string checker use entity work.string checker(logic);
begin
U1: string checker port map (input, clk, diagram Z1, diagram Z2);
U2: string checker port map (input, clk, gate Z1, gate Z2);
clock tic: process begin
loop
clk <= ’1’;
wait for 5 ns;
clk <= ’0’;
wait for 5 ns; end loop;
end process;

input changes: process
begin
input <= ’1’ after 0 ns,
’1’ after 10 ns,
’1’ after 20 ns,
’0’ after 30 ns,
’0’ after 40 ns,
’1’ after 50 ns,
’0’ after 60 ns,
’1’ after 70 ns,
’0’ after 80 ns,
’0’ after 90 ns,
’0’ after 100 ns,
’1’ after 110 ns,
’1’ after 120 ns,
’0’ after 130 ns,
’1’ after 140 ns,
’0’ after 150 ns,
’1’ after 160 ns,
’1’ after 170 ns;
wait;
end process;
end test1;

You need to type in your designs and the test bench in a file (say checker.vhd). This can be done
by using your favorite editor or the notepad in the design manager, or from within Design Architect
select Open VHDL and save it to a file.

After this, you need to create the working directory for the VHDL compiler. You can do this in two
ways, one from the command line, and one from within Design Architect. From the commandline,
type qhlib work and it will create the work library where the parts of the compiled design will be
placed. From within Design Architect, deselect all windows by clicking on the background, click

2



QuickHDL and select qhlib from the menu. At the prompt enter something/ece303/lab4/work.

Now it is necessary to compile your design. Again, there are two ways to compile the design, one
from the commandline, and one within Design Architect. To compile from the commandline, you
need to enter qvhcom checker.vhd. From within Design Architect, again from the QuickHDL menu,
you need to select qvhcom. If there are any errors in the output, you need to check your source and
re-compile it.

Finally, you need to simulate your design. You can type qhsim from the UNIX command line or
select simulate from the QuickHDL menu. Once you have started the simulator you need to select
the appropriate module (here it is entity test bench). Depending on how you started the simulator,
you might need to set up the signals and the wave windows. To do this, select View/Signals and then
View/Wave from the simulator menu. You need to then export the signals so that the appropriate
ones are shown in the waveform display. You can export individually by selecting one, and then
Wave/Selected Signals in the Signals window, or by clicking the first one, holding down shift, and
then clicking the last before selecting Wave/Selected Signals. This will cause those signals to be
display in the Wave window. Simply invoke the run option to start the simulation.

To print waveforms, select File/Write Postscript to output a postscript file describing the waveform
display.

You need to turn in a print-out of the VHDL source file and the waveforms.

3


