ECE357: Introduction to VLSI CAD

Prof. Hai Zhou

Electrical Engineering & Computer Science Northwestern University

Logistics

- Time & Location: MWF 11-11:50 TECH L160
- Instructor: Hai Zhou haizhou@ece.northwestern.edu
- Office: L461
- Office Hours: W 3-5P
- Teaching Assistant: Chuan Lin
- Texts:

VLSI Physical Design Automation: Theory & Practice, Sait & Youssef, World Scientific, 1999.

• Reference:

An Introduction to VLSI Physical Design, Sarrafzadeh & Wong, McGraw Hill, 1996.

- Grading: Participation-10% Project-30% Midterm-30% Homework-30%
- Homework must be turned in before class on each due date, late: -40% per day
- Course homepage:

www.ece.northwestern.edu/~haizhou/ece357

What can you expect from the course

- Understand modern VLSI design flows (but not the details of tools)
- Understand the physical design problem
- Familiar with the stages and basic algorithms in physical design
- Improve your capability to design algorithms to solve problems
- Improve your capability to think and reason

What do I expect from you

- Active and critical participation
 - speed me up or slow me down if my pace mismatches yours
 - "Your role is not one of sponges, but one of whetstones; only then the spark of intellectual excitement can continue to jump over"
- Read the textbook
- Do your homeworks
 - You can discuss homework with your classmates, but need to write down solutions independently

VLSI (Very Large Scale Integrated) chips

- VLSI chips are everywhere
 - computers
 - commercial electronics: TV sets, DVD, VCR, ...
 - voice and data communication networks
 - automobiles
- VLSI chips are artifacts
 - they are produced according to our will ...

Design: the most challenging human activity

- Design is a process of creating a structure to fulfill a requirement
- Brain power is the scarcest resource
 - Delegate as much as possible to computers-CAD
- Avoid two extreme views:
 - Everything manual: impossible-millions of gates
 - Everything computer: impossible either

Design is always difficult

- A main task of a designer is to manage complexity
- Silicon complexity: physical effects no longer be ignored
 - resistive and cross-coupled interconnects; signal integrity; weak and faster gates
 - reliability; manufacturability
- System complexity: more functionality in less time
 - gap between design and fabrication capabilities
 - desire for system-on-chip (SOC)

CAD: A tale of two designs

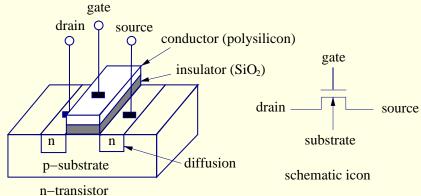
- Target-hardware design
 - How to create a structure on silicon to implement a function
- Aid-software design (programming)
 - How to create an algorithm to solve a design problem
- Be conscious of their similarities and differences

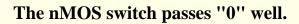
Emphasis of the course

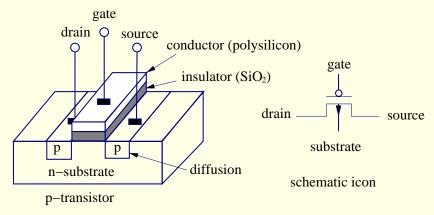
- Design flow
 - Understand how design process is decomposed into many stages
 - What are the problems need to be solved in each stage
- Algorithms
 - Understand how an algorithm solves a design problem
 - Consider the possibility to extend it
- Be conscious and try to improve problem solving skills

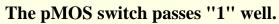
Basics of MOS Devices

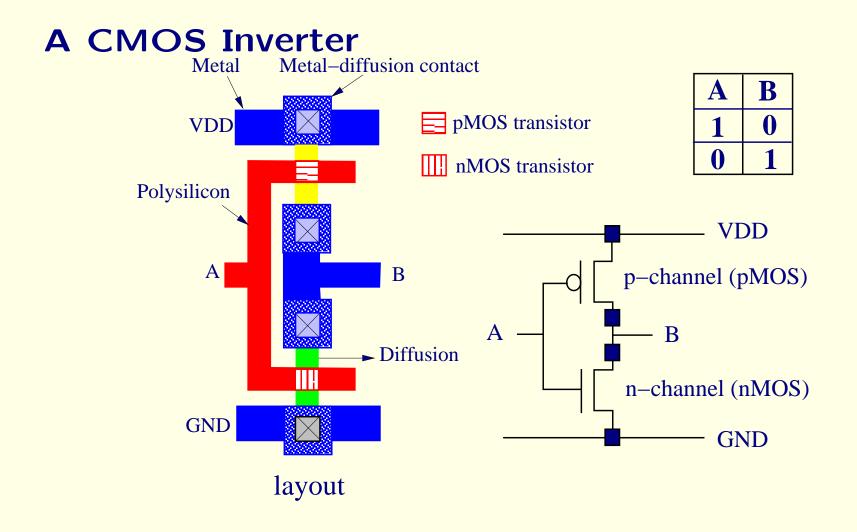
- The most popular VLSI technology: MOS (Metal-Oxide-Semiconductor).
- CMOS (Complementary MOS) dominates nMOS and pMOS, due to CMOS's lower power dissipation, high regularity, etc.
- Physical structure of MOS transistors and their schematic icons: nMOS, pMOS.
- Layout of basic devices:
 - CMOS inverter
 - CMOS NAND gate
 - CMOS NOR gate

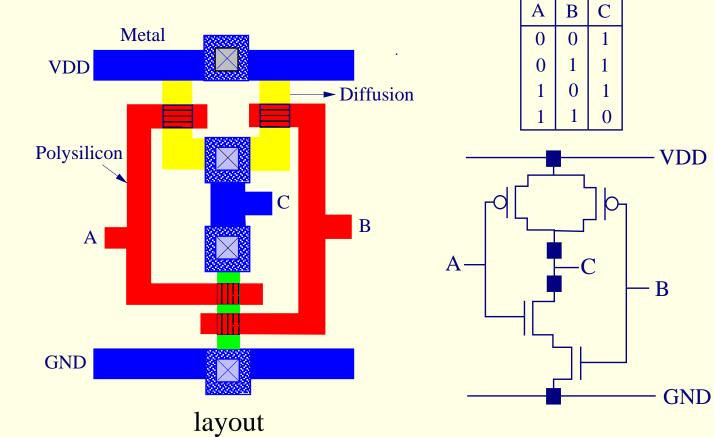




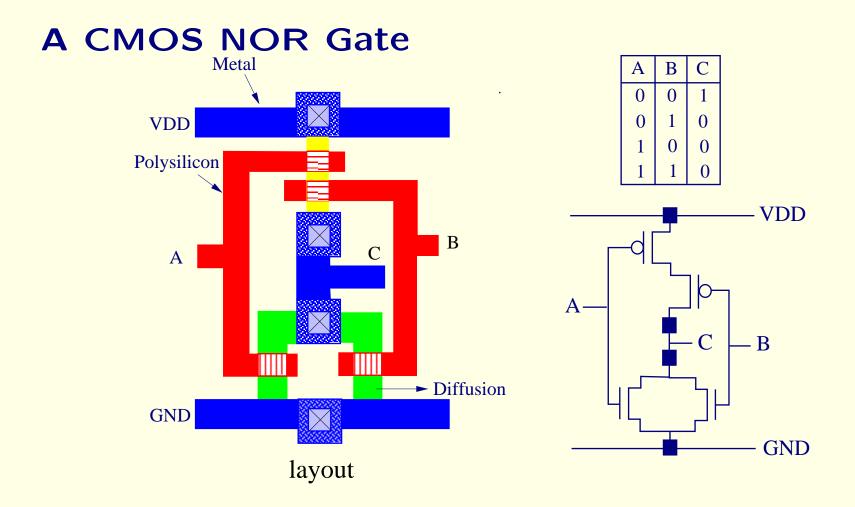








A CMOS NAND Gate

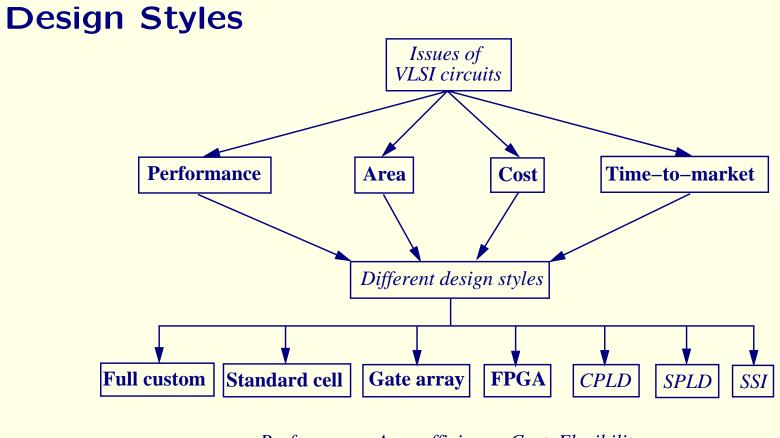


Current VLSI design phases

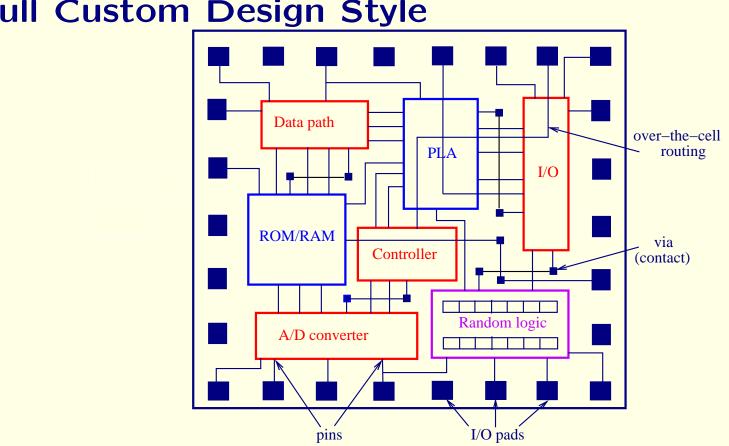
- Synthesis (i.e. specification \rightarrow implementation)
 - 1. High level synthesis (459 VLSI Algorithmics)
 - 2. Logic synthesis (459 VLSI Algorithmics)
 - 3. Physical design (This course)
- Analysis (implementation \rightarrow semantics)
 - Verification (design verification, implementation verification)
 - Analysis (timing, function, noise, etc.)
 - Design rule checking, LVS (Layout Vs. Schematic)

Physical Design

- Physical design converts a structural description into a geometric description.
- Physical design cycle:
 - 1. Circuit partitioning
 - 2. Floorplanning
 - 3. placement, and pin assignment
 - 4. Routing (global and detailed)
 - 5. Compaction

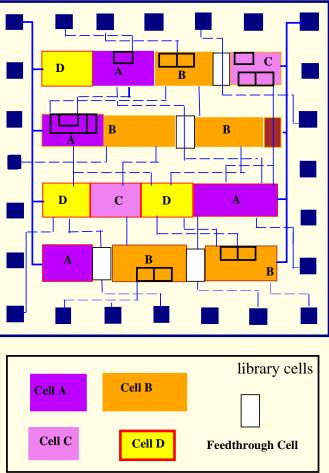


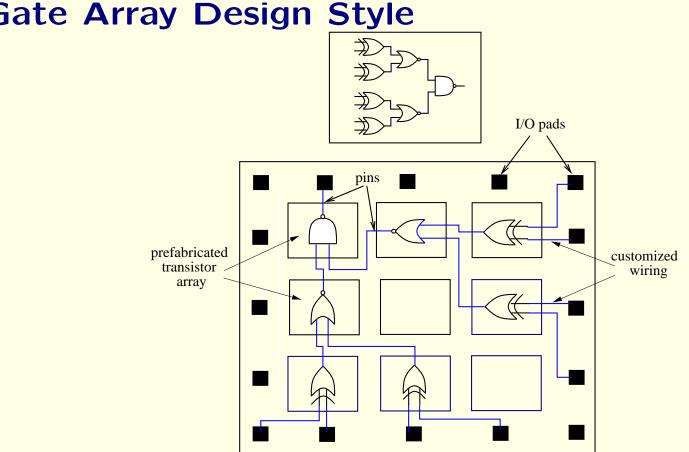
Performance, Area efficiency, Cost, Flexibility



Full Custom Design Style

Standard Cell Design Style

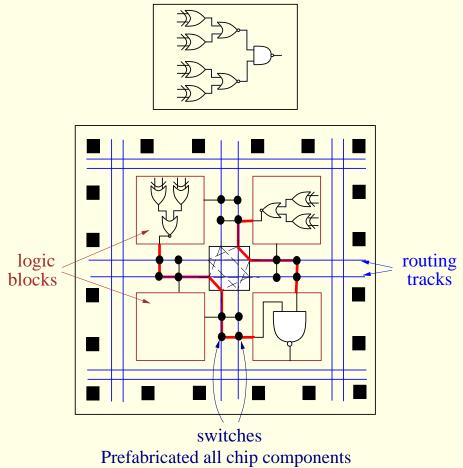




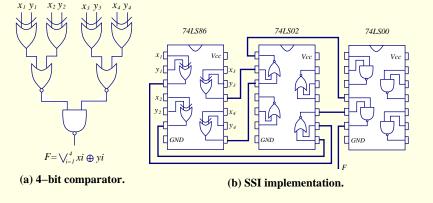
Gate Array Design Style

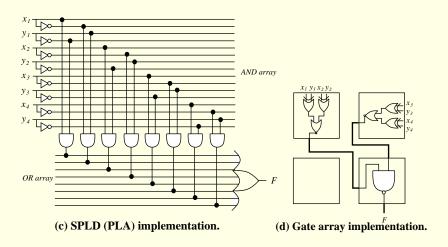
20

FPGA Design Style



SSI/SPLD Design Style





Comparisons of Design Styles

	Full custom	Standard cell	Gate array	FPGA	SPLD
Cell size	variable	fixed height*	fixed	fixed	fixed
Cell type	variable	variable	fixed	programmable	programmable
Cell placement	variable	in row	fixed	fixed	fixed
Interconnections	variable	variable	variable	programmable	programmable

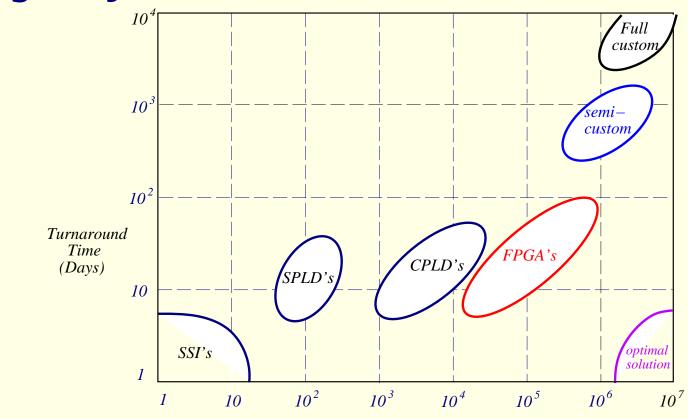
* Uneven height cells are also used.

Comparisons of Design Styles

	Full custom	Standard cell	Gate array	FPGA	SPLD
Fabrication time			+	+++	++
Packing density	+++	++	+		
Unit cost in large quantity	+++	++	+		—
Unit cost in small quantity			+	+++	+
Easy design and simulation			—	++	+
Easy design change			—	++	++
Accuracy of timing simulation	—	—	—	+	+
Chip speed	+++	++	+	_	——

+ desirable

- not desirable



Design-Style Trade-offs

Logic Capacity (Gates)

Algorithms 101

- Algorithm: a finite step-by-step procedure to solve a problem
- Requirements:
 - Unambiguity: can even be followed by a machine
 - Basic: each step is among a given primitives
 - Finite: it will terminate for every possible input

A game

 An ECE major is sitting on the Northwestern beach and gets thirsty, she knows that there is an ice-cream booth along the shore of Lake Michigan but does not know where-not even north or south. How can she find the booth in the shortest distance?

• Primitives: walking a distance, turning around, etc.

A first solution

 Select a direction, say north, and keep going until find the booth

 Suppose the booth is to the south, she will never stop... of course, with the assumption she follows a straight line, not lake shore or on earth

Another solution

- Set the place she is sitting as the origin
- Search to south 1 yard, if not find, turn to north
- Search to north 1 yard, if not find, turn to south
- Search to south 2 yard, if not find, turn to north
- Search to north 2 yard, if not find, turn to south
- ... (follow the above pattern in geometric sequence 1, 2, 4, 8, ...)

OR

- n = -1;
- While (not find) do
 - -n = n + 1;
 - Search to south 2^n , and turn;
 - Search to north 2^n , and turn;

Correctness proof

Each time when the while loop is finished, the range from south 2ⁿ to north 2ⁿ is searched. Based on the fact that the booth is at a constant distance x from the origin, it will be within a range from south 2^N to north 2^N for some N. With n to increment in each loop, we will find the booth in finite time.

• Is this the fastest (or shortest) way to find the booth?

Analysis of algorithm

- Observation: the traveled distance depends on where is the booth
- \bullet Suppose the distance between the booth and the origin is x
- When the algorithm stops, we should have $2^n \geq x$ but $2^{n-1} < x$
- The distance traveled is

$$3 \cdot 2^{n} + 2(2 \cdot 2^{n-1} + 2 \cdot 2^{n-2} + \dots + 2) \le 7 \cdot 2^{n}$$

- which is smaller than 14x
- We know that the lower bound is x, can we do better?

Complexity of an algorithm

- Two resources: running time and storage
- They are dependent on inputs: expressed as functions of input size
 - Why input size: lower bound (at least read it once)
- **Big-Oh** notation: f(n) = O(g(n)) if there exist constants n_0 and c such that for all $n > n_0$, $f(n) \le c \cdot g(n)$.
 - Make our life easy: is it 13x instead of 14x in our game
 - The solution is asymptotically optimal for our game

Time complexity of an algorithm

• Run-time comparison: 1000 MIPS (Yr: 200x), 1 instr. /op.

Time	Big-Oh	n = 10	n = 100	$n = 10^{3}$	$n = 10^{6}$
500	O(1)	$5 imes 10^{-7}$ sec	$5 imes 10^{-7}~{ m sec}$	$5 imes 10^{-7}$ sec	$5 imes 10^{-7}~{ m sec}$
3n	O(n)	$3 imes 10^{-8}~{ m sec}$	$3 imes 10^{-7}~{ m sec}$	$3 imes 10^{-6}~{ m sec}$	0.003 sec
$n\log n$	$O(n \log n)$	$3 imes 10^{-8}~{ m sec}$	$2 imes 10^{-7}~{ m sec}$	$3 imes 10^{-6}~{ m sec}$	0.006 sec
n^2	$O(n^2)$	$1 imes 10^{-7} m ~sec$	$1 imes 10^{-5}~{ m sec}$	0.001 sec	16.7 min
n^3	$O(n^3)$	$1 imes 10^{-6}~{ m sec}$	0.001 sec	1 sec	3×10^5 cent.
2^n	$O(2^n)$	$1 imes 10^{-6}$ sec	$3 imes 10^{17}$ cent.	-	-
n!	O(n!)	0.003 sec	-	-	-

• Polynomial-time complexity: O(p(n)), where n is the input size and p(n) is a polynomial function of n.

Complexity of a problem

- Given a problem, what is the running time of the fastest algorithm for it?
- Upper bound: easy-find an algorithm with less time
- Lower bound: hard-every algorithm requires more time
- P: set of problems solvable in polynomial time
- NP(Nondeterministic P): set of problems whose solution can be proved in polynomial time
- Millennium open problem: $NP \neq P$?
 - Fact: there are a set of problems in NP resisting any polynomial solution for a long time (40 years)

NP-complete and NP-hard

- Cook 1970: If the problem of boolean satisfiability can be solved in poly. time, so can all problems in **NP**.
- Such a problem with this property is called NP-hard.
- If a NP-hard problem is in **NP**, it is called NP-complete.
- Karp 1971: Many other problems resisting poly. solutions are NP-complete.

How to deal with a hard problem

- Prove the problem is NP-complete:
 - 1. The problem is in NP (i.e. solution can be proved in poly. time)
 - 2. It is NP-hard (by polynomial reducing a NP-complete problem to it)
- Solve NP-hard problems:
 - Exponential algorithm (feasible only when the problem size is small)
 - * Pseudo-polynomial time algorithms
 - Restriction: work on a subset of the input space

- Approximation algorithms: get a provable close-to-optimal solution
- Heuristics: get a as good as possible solution
- Randomized algorithm: get the solution with high probability

Algorithmic Paradigms

- Divide and conquer: divide a problem into sub-problems, solve sub-problems, and combine them to construct a solution.
 - Greedy algorithm: optimal solutions to sub-problems will give optimal solution to the whole problem.
 - Dynamic programming: solutions to a larger problem are constructed from a set of solutions to its sub-problems.
- Mathematical programming: a system of optimizing an objective function under constraints functions.
- Simulated annealing: an adaptive, iterative, non-deterministic algorithm that allows "uphill" moves to escape from local optima.

- Branch and bound: a search technique with pruning.
- Exhaustive search: search the entire solution space.